Skip to main content

Advertisement

Log in

Microbial Endophytes: Emerging Trends and Biotechnological Applications

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A plethora of knowledge on the role of endophytic microorganisms has been reported in recent years. The cooperative chemistry between the endophytes and the internal host tissue has turned them into a crucial aid for biotechnological applications. Microbial endophytes are ubiquitous among most plant species on earth and contribute to the benefit of host plants by generating a wide range of metabolites that provide the plant with survival value. Endophytes can either directly stimulate plant growth by producing phytohormones or indirectly stimulate plant growth by increasing the availability of soil nutrients to plants. Endophytes may also help suppress diseases in plants directly by neutralizing environmental toxic elements, and by inhibiting plant pathogens by antagonistic action, or indirectly by stimulating induced plant systemic resistance. Several natural compounds produced by endophytes as secondary metabolites are beneficial to both plants and humans. This is why endophytes are regarded as a significant source of novel natural products of value in modern medicine, agriculture, and industry. Endophytes are known for producing pigments, bioactive compounds, and industrially important enzymes, like glucanase, amylase, laccase, etc. Some endophytes can also produce nanoparticles that potentially have numerous applications in a variety of fields. They also play an important role in biodegradation and bioremediation, both of which are beneficial to the environment and ecology. In this review, we highlighted potential biotechnological applications of endophytic microbes, as well as their diverse importance in plant growth and public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors also undertake that the article represents valid work. Neither this article nor any part of it has been copied or plagiarized from other works.

Code Availability

Not applicable.

References

  1. Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9(2732):1–12. https://doi.org/10.3389/fmicb.2018.02732

    Article  Google Scholar 

  2. Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4(120):1–15. https://doi.org/10.3389/fpls.2013.00120

    Article  Google Scholar 

  3. Adeleke BS, Babalola OO, Glick BR (2021) Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere 20(100433):1–12. https://doi.org/10.1016/j.rhisph.2021.100433

    Article  Google Scholar 

  4. Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D Don. 3 Biotech 6(2):1–14. https://doi.org/10.1007/s13205-016-0518-3

    Article  Google Scholar 

  5. Upadhaya P, Shrivastava R, Agrawal PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech. 6(1):1–15. https://doi.org/10.1007/s13205-015-0316-3

    Article  Google Scholar 

  6. Rajput K, Agrawal S, Sharma J, Agrawal PK (2017) Mycosynthesis of silver nanoparticles using endophytic fungus Pestalotiopsis versicolor and investigation of its antibacterial and azo dye degradation efficacy. Kavaka 49:65–71

    Google Scholar 

  7. Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Technol 57:621–629. https://doi.org/10.1590/S1516-8913201402043

    Article  Google Scholar 

  8. Strobel G (2018) The Emergence of endophytic microbes and their biological promise. J Fungi (Basel) 4(2):1–19. https://doi.org/10.3390/jof4020057

    Article  CAS  Google Scholar 

  9. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. https://doi.org/10.1007/s00253-015-6487-3

    Article  CAS  PubMed  Google Scholar 

  10. Sharma A, Malhotra B, Kharkwal H, Kulkarni GT, Kaushik N (2020) Therapeutic agents from endophytes harbored in asian medicinal plants. Phytochem Rev 19:681–720. https://doi.org/10.1007/s11101-020-09683-8

    Article  CAS  Google Scholar 

  11. Legodi LM, La GD, Jansen van Rensburg EL, Ncube I (2020) Isolation of cellulose degrading fungi from decaying Banana Pseudostem and Strelitzia alba. Enzyme ResearchArticle ID 1390890:1–10. https://doi.org/10.1155/2019/1390890

    Article  CAS  Google Scholar 

  12. Agrawal PK, Upadhyay P, Shrivastava R, Sharma S, Garlapati VK (2021) Evaluation of the ability of endophytic fungi from Cupressus torulosa to decolorize synthetic textile dyes. JHazard Toxic Radioact Waste 25(1):06020001–06020005

    Google Scholar 

  13. Sunitha VH, Nirmala DD, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J of Agric Scince. 9(1):1–9. https://doi.org/10.5829/idosi.wjas.2013.9.1.72148

    Article  CAS  Google Scholar 

  14. Liu X, Zhou ZY, Cui JL et al (2021) Biotransformation ability of endophytic fungi: from species evolution to industrial applications. Appl Microbiol Biotechnol 105(19):7095–7113. https://doi.org/10.1007/s00253-021-11554-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35(1):62–74. https://doi.org/10.3109/07388551.2013.800018

    Article  CAS  PubMed  Google Scholar 

  16. Kuzniar A, Włodarczyk K, Wolinska A (2019) Agricultural and other biotechnological applications resulting from trophic plant-endophyte interactions. Agronomy 9(12):1–22. https://doi.org/10.3390/agronomy9120779

    Article  CAS  Google Scholar 

  17. Fadiji AF, Babalola OO (2020) Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci. 27(12):3622–3633. https://doi.org/10.1016/j.sjbs.2020.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. Biotechnology. https://doi.org/10.1016/b978-0-7506-9003-4.50009-5

    Article  PubMed  Google Scholar 

  19. Hardoim PR, Van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The Hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-Lapierre M, Lillard E et al (2015) Advancing the science of microbial symbiosis to support invasive species management: a case study on phragmites in the Great Lakes. Front Microbiol 6(95):1–14. https://doi.org/10.3389/fmicb.2015.00095

    Article  Google Scholar 

  21. Fontana DC, de Paula S, Torres AG, de Souza V, Pascholati SF, Schmidt D, Dourado Neto D (2021) Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens (Basel, Switzerland) 10(570):1–28. https://doi.org/10.3390/pathogens10050570

    Article  Google Scholar 

  22. Hameed A, Yeh MW, Hsieh YT, Chung WC, Lo CT, Young LS (2015) Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed borne dissemination into rhizosphere under gnotobiotic P-stress. Plant Soil 394:177–197. https://doi.org/10.1007/s11104-015-2506-5

    Article  CAS  Google Scholar 

  23. Patel P, Trivedi G, Saraf M (2018) Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environ Sustain 1:357–365. https://doi.org/10.1007/s42398-018-00031-3

    Article  Google Scholar 

  24. Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532. https://doi.org/10.1111/j.1751-7915.2011.00253.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh RK, Singh P, Guo DJ, Sharma A, Li DP et al (2021) Root-derived endophytic diazotrophic bacteria Pantoea cypripedii AF1 and Kosakonia arachidis EF1 promote Nitrogen assimilation and growth in sugarcane. Front Microbiol 12(774707):1–19. https://doi.org/10.3389/fmicb.2021.774707

    Article  Google Scholar 

  26. Davicre JM, Achard P (2013) Gibberellin signaling in plants Development 140:1147–1151. https://doi.org/10.1242/dev.087650

    Article  CAS  Google Scholar 

  27. Aldesuquy H, Mansour F, Abo-Hamed S (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470. https://doi.org/10.1007/BF02820792

    Article  Google Scholar 

  28. Emami S, Alikhani HA, Pourbabaee AA, Etesami H, Motasharezadeh B, Sarmadian F (2020) Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere 14:100196. https://doi.org/10.1016/j.rhisph.2020.100196

    Article  Google Scholar 

  29. Lucero CT, Lorda GS, Anzuay MS, Luduena LM, Taurian T (2021) Peanut endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants. Curr Microbiol 78:1961–1972. https://doi.org/10.1007/s00284-021-02469-x

    Article  CAS  PubMed  Google Scholar 

  30. Adhikari P, Pandey A (2019) Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere 9:2–9. https://doi.org/10.1016/j.rhisph.2018.11.002

    Article  Google Scholar 

  31. Maheshwari R, Bhutani N, Suneja P (2019) Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants. J Appl Biol Biotechnol 7(05):7–14. https://doi.org/10.7324/JABB.2019.70502

    Article  CAS  Google Scholar 

  32. Purushotham N, Jones E, Monk J, Ridgway H (2018) Community structure of endophytic actinobacteria in a New Zealand native medicinal plant Pseudowintera colorata (Horopito) and their influence on plant growth. Microb Ecol 76(3):729–740. https://doi.org/10.1007/s00248-018-1153-9

    Article  CAS  PubMed  Google Scholar 

  33. Chowdappa S, Jagannath S, Konappa N, Udayashankar AC, Jogaiah S (2020) Detection and characterization of antibacterial siderophores secreted by endophytic fungi from Cymbidium aloifolium. Biomolecules 10(10):1–18. https://doi.org/10.3390/biom10101412

    Article  CAS  Google Scholar 

  34. Waqas M, Khan AL, Lee IJ (2014) Bioactive chemical constituents produced by endophytes and effects on rice plant growth. J Plant Interact 9:478–487. https://doi.org/10.1080/17429145.2013.860562

    Article  CAS  Google Scholar 

  35. Kohl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci 10:1–19. https://doi.org/10.3389/fpls.2019.00845

    Article  Google Scholar 

  36. Chlebek D, Pinski A, Zur J, Michalska J, Hupert-Kocurek K (2020) Genome mining and evaluation of the biocontrol potential of Pseudomonas fluorescens BRZ63, a new endophyte of Oilseed Rape (Brassica napus L) against fungal pathogens. Int J Mol Sci 21(8740):1–22. https://doi.org/10.3390/ijms21228740

    Article  CAS  Google Scholar 

  37. Andreote FD, de Araújo WL, de Azevedo JL, van Elsas JD, da Rocha UN, van Overbeek LS (2009) Endophytic colonization of potato (Solanum tuberosum L) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl Environ Microbiol 75(11):3396–3406. https://doi.org/10.1128/AEM.00491-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Phuakjaiphaeo C, Kunasakdakul K (2015) Isolation and screening for inhibitory activity on Alternaria brassicicola of endophytic actinomycetes from Centella asiatica (L). Urban J Agri Technol 11(4):903–912

    Google Scholar 

  39. Qingfeng M, Ravi G, Woo MC, Wook KS, Yiming W et al (2019) Proteomics of rice-Magnaporthe oryzae interaction: What have we learned so far?. Front Plant Sci 10(1383):1–14. https://doi.org/10.3389/fpls.2019.01383

    Article  Google Scholar 

  40. Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR (2021) Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology (Basel) 10(475):1–18. https://doi.org/10.3390/biology10060475

    Article  CAS  Google Scholar 

  41. Mousa WK, Shearer CR, Limay-Rios V, Zhou T, Raizada MN (2015) Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Front Plant Sci 6:1–19. https://doi.org/10.3389/fpls.2015.00805

    Article  Google Scholar 

  42. Aravind R, Kumar A, Eapen SJ, Ramana KV (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48(1):58–64. https://doi.org/10.1111/j.1472-765X.2008.02486.x

    Article  CAS  PubMed  Google Scholar 

  43. Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Veer V (2014) Invitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54(3):302–309. https://doi.org/10.1007/s12088-014-0458-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mejia LC, Rojas EI, Maynard Z, Van Bael SA, Arnold EA, Hebbar P (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14. https://doi.org/10.1016/j.biocontrol.2008.01.012

    Article  Google Scholar 

  45. Yurnaliza AINP, Esyanti RR, Susanto A (2014) Antagonistic activity assessment of fungal endophytes from oil palm tissues against Ganoderma boninense. Plant Pathol J 13:257–267. https://doi.org/10.3923/ppj.2014.257.267

    Article  CAS  Google Scholar 

  46. Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S et al (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal contaminated field site. Environ Pollut 147:540–545. https://doi.org/10.1016/j.envpol.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  47. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phyto beneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56(3):455–470. https://doi.org/10.1111/j.1574-6941.2006.00082.x

    Article  CAS  PubMed  Google Scholar 

  48. Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97(22):9589–9596. https://doi.org/10.1007/s00253-013-5235-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim TU, Cho SH, Han JH, Shin YM, Lee HB, Kim SB (2012) Diversity and physiological properties of root endophytic Actinobacteria in native herbaceous plants of Korea. J Microbiol 50(1):50–57. https://doi.org/10.1007/s12275-012-1417-x

    Article  CAS  PubMed  Google Scholar 

  50. Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling DN (2006) Bacterial endophyte enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57(2):302–310. https://doi.org/10.1111/j.1574-6941.2006.00121.x

    Article  CAS  PubMed  Google Scholar 

  51. Verma J, Sharma D, Agarwal PK (2016) Biodegradation of polycyclic aromatic hydrocarbon by Alternaria alternata. International Journal of Science Engineering and Management 1(2):97–102

    Google Scholar 

  52. Russell JR, Huang J, Anand P, Kucera K, Sandoval A (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084. https://doi.org/10.1128/AEM.00521-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chanyal S, Agrawal PK (2017) Decolorization of textile dye by laccase from newly isolated endophytic fungi Daldinia sp. Kavaka 48:33–41

    Google Scholar 

  54. Mastretta C, Taghavi S, Van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11(3):251–267. https://doi.org/10.1080/15226510802432678

    Article  CAS  Google Scholar 

  55. Kip N, Fritz C, Langelaan ES, Pan Y, Bodrossy L, Pancotto V, Jetten MSM, Smolders AJP (2012) Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences 9:47–55. https://doi.org/10.5194/bg-9-47-2012

    Article  CAS  Google Scholar 

  56. Strobel GA, Miller RV, Miller C, Condron M, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf.quercina. Microbiology 145(8):1919–1926. https://doi.org/10.1099/13500872-145-8-1919

    Article  CAS  PubMed  Google Scholar 

  57. Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna BM (2013) Endophytic fungi from miquelia dentata bedd produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20(3–4):337–342. https://doi.org/10.1016/j.phymed.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  58. Lin R, Kim H, Hong J, Li QJ (2014) Biological evaluation of Subglutinol A as a novel immunosuppressive agent for inflammation intervention. ACS Med Chem Lett 5:485–490. https://doi.org/10.1021/ml4004809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sreekanth D, Sushim GK, Syed A, Khan BM, Ahmad A (2011) Molecular and morphological characterization of a taxol-producing endophytic fungus, Gliocladium sp., from Taxus baccata. Mycobiology 39:151–157. https://doi.org/10.5941/MYCO.2011.39.3.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X, He XR (2014) Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol 52:1237–1243. https://doi.org/10.3109/13880209.2014.885061

    Article  CAS  PubMed  Google Scholar 

  61. Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp isolated from Piper longum L. J Antibiot 64(6):427–431. https://doi.org/10.1038/ja.2011.27

    Article  CAS  Google Scholar 

  62. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PCW, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183. https://doi.org/10.1016/s0031-9422(02)00062-6

    Article  CAS  PubMed  Google Scholar 

  63. Lu C, Shen YA (2007) Novel ansamycin, naphthomycin K from Streptomyces sp. J Antibiot (Tokyo) 60:649–653. https://doi.org/10.1038/ja.2007.84

    Article  CAS  PubMed  Google Scholar 

  64. de Felico R, Pavao GB, de Oliveria ALL et al (2015) Antibacteria, antifungal and cytotoxic activities exhibited by endophytic fungi from Brazilian marine red algae Bostrychia tenella (Ceramiales). Rev Bras Farmacogen 25:641–650. https://doi.org/10.1016/j.bjp.2015.08.003

    Article  CAS  Google Scholar 

  65. Wu F, Yang D, Zhang L, Chen Y, Hu X, Li L, Liang J (2019) Diversity estimation and antimicrobial activity of culturable endophytic fungi from Litsea cubeba (Lour) Pers in China. Forests 10(33):1–12. https://doi.org/10.3390/f10010033

    Article  Google Scholar 

  66. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd-Allah EF (2018) Endophytic fungi-alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37. https://doi.org/10.3389/fphar.2018.00309

    Article  CAS  Google Scholar 

  67. Wang LW, Wang JL, Chen J, Chen JJ, Shen JW, Feng XX, Kubicek CP, Lin FC, Zhang CL, Chen FY (2017) A novel derivative of (-) mycousnine produced by the endophytic fungus Mycosphaerella nawae, exhibits high and selective immunosuppressive activity on T cells. Front Microbiol 8(1251):1–14. https://doi.org/10.3389/fmicb.2017.01251

    Article  Google Scholar 

  68. Kusari S, Lamshoft M, Zuhlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162. https://doi.org/10.1021/np070669k

    Article  CAS  PubMed  Google Scholar 

  69. Hong-Thao PT, Mai-Linh NV, Hong-Lien NT, Hieu NV (2016) Biological characteristics and antimicrobial activity of endophytic Streptomyces sp. TQR12-4 isolated from Elite Citrus nobilis Cultivar Ham Yen of Vietnam. Int J Microbiol 7207818:1–7. https://doi.org/10.1155/2016/7207818

    Article  CAS  Google Scholar 

  70. Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10. https://doi.org/10.1007/s13225-012-0158-9

    Article  Google Scholar 

  71. Triandriani W, Saputri DD, Suhendar U, Sogandi (2020) Antioxidant activity of endophytic bacterial extract isolated from clove leaf (Syzygium aromaticum L). J Agric Appl Biol 1(1):9–17. https://doi.org/10.11594/jaab.01.01.02

    Article  Google Scholar 

  72. Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X (2009) Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohyd Polym 78(2):275–281. https://doi.org/10.3390/md14020040

    Article  CAS  Google Scholar 

  73. Danagoudar A, Joshi CG, Ravi SK, Kumar HGR, Ramesh BN (2018) Antioxidant and cytototoxic potential of endophytic fungi isolated from medicinal plant Tragia involucrate L. Phcog Res 10:188–194. https://doi.org/10.4103/pr.pr_137_17

    Article  CAS  Google Scholar 

  74. Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomaki V (2018) Antiviral agents from fungi: diversity, mechanisms and potential applications. Front Microbiol 9:1–18. https://doi.org/10.3389/fmicb.2018.02325

    Article  Google Scholar 

  75. Vinod kumar S, Nakkeeran S, Renukadevi P, Mohankumar S, (2018) Diversity and antiviral potential of rhizospheric and endophytic Bacillus species and phyto-antiviral principles against tobacco streak virus in cotton. Agric Ecosyst Environ 267:42–51. https://doi.org/10.1016/j.agee.2018.08.008

    Article  CAS  Google Scholar 

  76. Ding L, Munch J, Goerls M, Fiebig HH, Lin WH, Hertweck C (2010) Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett 20:6685–6687. https://doi.org/10.1016/j.bmcl.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  77. Wellensiek BP, Ramakrishnan R, Bashyal BP, Eason Y, Gunatilaka AAL, Ahmad N (2013) Inhibition of HIV-1 replication by secondary metabolites from endophytic fungi of desert plants. Open Virol J 7:72–80. https://doi.org/10.2174/1874357920130624002

    Article  PubMed  PubMed Central  Google Scholar 

  78. Selim KA, Elkhateeb WA, Tawila AM, El-Beih AA, Abdel-Rahman TM, El-Diwany AI, Ahmed EF (2018) Antiviral and antioxidant potential of fungal endophytes of egyptian medicinal plants. Fermentation 4(49):1–11. https://doi.org/10.3390/fermentation4030049

    Article  CAS  Google Scholar 

  79. Feng Y, Ren F, Niu S, Wang L, Li L, Liu X, Che Y (2014) Guanacastane Diterpenoids from the plant endophytic fungus Cercospora sp. J Nat Prod 77:873–881. https://doi.org/10.1021/np4009688

    Article  CAS  PubMed  Google Scholar 

  80. Nascimento AM, Conti R, Turatti ICC, Cavalcanti BC, Costa-Lotufo LV, Pessoa C, De Moraes MO, Manfrim V, Toledo JS, Cruz AK, Pupo MT (2012) Bioactive extracts and chemical constituents of two endophytic strains of Fusarium oxysporum. Rev Bras Farmacogn 22:1276–1281. https://doi.org/10.1590/S0102-695X2012005000106

    Article  CAS  Google Scholar 

  81. Sebola TE, Uche-Okereafor NC, Tapfuma KI, Mekuto L, Green E, Mavumengwana V (2019) Evaluating antibacterial and anticancer activity of crude extracts of bacterial endophytes from Crinum macowanii Baker bulbs. Microbiol Open 8(12):e914. https://doi.org/10.1002/mbo3.914

    Article  Google Scholar 

  82. Kumar SSD, Cheung HY, Zhu GY, Yang D, Fong WF, Hyde KD (2004) Isolation and identification of triptonide and its analogus compounds from a fungal culture of Pestalotiopsis leucothёs. Hong Kong Pharmaceutical Journal 12:158–164

    Google Scholar 

  83. Netala VR, Bobbu P, Ghosh SB, Tartte V (2015) Endophytic fungal assisted synthesis of silver nanoparticles, characterization and antimicrobial activity. Asian J Pharm Clin Res 8(3):113–116

    CAS  Google Scholar 

  84. Li X, Huizhong Xu, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials Article ID 270974:1–16. https://doi.org/10.1155/2011/270974

    Article  CAS  Google Scholar 

  85. Annamalai J, Nallamuthu T (2016) Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Applied Nanosci 6:259–265. https://doi.org/10.1007/s13204-015-0426-6

    Article  CAS  Google Scholar 

  86. El-Moslamy SH, Elkady MF, Rezk AH, Abdel-Fattah YR (2017) Applying Taguchi design and large-scale strategy for mycosynthesis of nanosilver from endophytic Trichoderma harzianum SYAF4 and its application against phytopathogens. Sci Rep 7:1–22. https://doi.org/10.1038/srep45297

    Article  CAS  Google Scholar 

  87. Verma VC, Anand S, Ulrichs C, Singh SK (2013) Biogenic gold nanotriangles from Saccharomonospora sp, an endophytic actinomycetes of Azadirachta indica A Juss. Int Nano Lett. 3(21):1–7. https://doi.org/10.1186/2228-5326-3-21

    Article  CAS  Google Scholar 

  88. Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pacific J Trop Biomed 2(12):953–959. https://doi.org/10.1016/S2221-1691(13)60006-4

    Article  CAS  Google Scholar 

  89. Sunkar S, Nachiyar CV, Renugadevi K (2014) Endophytic Bacillus cereus mediated synthesis of gold nanoparticles and their stabilization using biopolymer chitosan. J Chem and Pharm Res 6:434–443

    Google Scholar 

  90. Singh AK, Rathod V, Singh D, Ninganagouda S, Kulkarni P, Mathew J, Haq M (2015) Bioactive silver nanoparticles from endophytic fungus Fusarium sp. isolated from an ethno medicinal plant Withania somnifera (Ashwagandha) and its antibacterial activity. Int J Nanomat Biostruc 5:15–19

    Google Scholar 

  91. Das RK, Pachapur VL, Lonappan L et al (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(18):1–21. https://doi.org/10.1007/s41204-017-0029-4

    Article  CAS  Google Scholar 

  92. Bhardwaj A, Upadhyay P, Sharma D, Agrawal PK (2015) Optimization of culture condition for amylase production by Penicillium frequentans AVF2. Kavaka 44:45–49

    Google Scholar 

  93. Correal RC, Rhoden SA, Mota TR, Azevedo JL, Pamphile JA, de Souza CG, PolizeliMde L, Bracht A, Peralta RM (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Indian Microbiol Biotechnol 41:1467–1478. https://doi.org/10.1007/s10295-014-1496-2

    Article  CAS  Google Scholar 

  94. Bischof KM, Wicklow DT, Jordan DB, de Rezende ST, Liu S, Hughes SR, Rich JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58:499–503. https://doi.org/10.1007/s00284-008-9353-z

    Article  CAS  Google Scholar 

  95. Uzma F, Konappa NM, Chowdappa S (2016) Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. Egypt J Basic Appl Sci 3:335–342. https://doi.org/10.1016/j.ejbas.2016.08.007

    Article  Google Scholar 

  96. Borges KB, Borges WDS, Pupo MT, Bonato PS (2008) Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi. J Pharm Biomed Anal 46:945–952. https://doi.org/10.1016/j.jpba.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  97. Soares-Castro P, Soares F, Santos PM (2021) Current advances in the bacterial toolbox for the biotechnological production of monoterpene-based aroma compounds. Molecule 26(91):1–31. https://doi.org/10.3390/molecules26010091

    Article  CAS  Google Scholar 

  98. Bier MCJ, Medeiros ABP, Soccol CR (2017) Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol 121:137–144. https://doi.org/10.1016/j.funbio.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  99. Simanjuntak P, Prana TK, Wulandari D, Dharmawan A, Sumitro E, Hendriyanto MR (2010) Chemical studies on a curcumin analogue produced by endophytic fungal transformation. Asian J Appl Sci 3:60–66. https://doi.org/10.3923/ajaps.2010.60.66

    Article  CAS  Google Scholar 

  100. Bastos DZL, Pimentel IC, De Jesus DA, De Oliveira BH (2007) Biotransformation of betulinic and betulonic acids by fungi. Phytochemistry 68:834–839. https://doi.org/10.1016/j.phytochem.2006.12.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SA has made substantial contributions to the conception or design of the work and drafting the work, and she also undertakes that the article represents valid work. Neither this article nor any part of it has been copied or plagiarized from other works, that is, the article has not been published before OR communicated OR in simultaneous consideration to some other journal. AB has made substantial contributions to the some part conception or design of the work; or revising it critically for important intellectual content; and final approval of the version to be published, and he also undertakes that the article represents valid work. Neither this article nor any part of it has been copied or plagiarized from other works, that is, the article has not been published before OR communicated OR in simultaneous consideration to some other journal.

Corresponding author

Correspondence to Arun Bhatt.

Ethics declarations

Conflict of interest

The authors certify that the content covered in the manuscript has no conflict of interest with any financial entity.

Ethical Approval

Not applicable.

Consent to Participations

The authors hereby declare that they participated in writing and editing of manuscript entitled “Microbial endophytes: Emerging Trends and Biotechnological Applications.” The authors have read the final version and give our consent for the article to published in Current Microbiology.

Consent to Publications

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Bhatt, A. Microbial Endophytes: Emerging Trends and Biotechnological Applications. Curr Microbiol 80, 249 (2023). https://doi.org/10.1007/s00284-023-03349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03349-2

Navigation