Skip to main content
Log in

Cymbopogom Citratus Essential Oils: A Promising Source of Antifungals Against Panax Notoginseng-Associated Pathogenic Fungi

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Due to the great threat of chemical pesticides to the ecosystem environment, it is a long-term goal to find environmentally friendly green pesticides. Essential oils (EOs) are considered weapons in plant chemical defense and are important sources of green pesticides. Therefore, the antifungal effects and action mechanisms of Cymbopogom citratus (C. citratus) EOs against seven kinds of Panax notoginseng (P. notoginseng) pathogenic fungi were investigated. Oxford Cup results showed that C. citratus EOs had an excellent detraction effects against seven fungi of P. notoginseng. Gas chromatography–mass spectrometry (GC–MS) was used to construct the chemical profiles of C. citratus EOs, disclosed that the main categories are terpenes and oxygenated terpenes. In addition, compared with the hymexazol, the minimum inhibitory concentration (MIC) showed that EOs and their main components had strong antifungal activities. Besides, EOs had a synergistic effect with hymexazol (a chemical pesticide). The antifungal mechanism of C. citratus EOs was studied by using Fusarium oxysporum (F. oxysporum) as the dominant pathogen. C. citratus EOs may affect the metabolism of fungi and induce mycotoxins to destroy the cell wall to achieve antifungal effects. Finally, EOs were found to significantly retard P. notoginseng infection by F. oxysporum. According to our research, C. citratus EOs are potential green antifungal agent that can be used in the cultivation of P. notoginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code Availability

Not applicable.

References

  1. Chen CJ, Li QQ, Zeng ZY, Duan SS, Wang W et al (2020) Efficacy and mechanism of Mentha haplocalyx and Schizonepeta tenuifolia essential oils on the inhibition of Panax notoginseng pathogens. Ind Crops Prod 145:112073. https://doi.org/10.1016/j.indcrop.2019.112073

    Article  CAS  Google Scholar 

  2. Cai L, Pen P (2021) Research progress on pharmacological effects of Panax notoginseng. Shandong chemical industry 50:70–71. https://doi.org/10.19319/j.cnki.issn.1008-021x.2021.03.029

    Article  CAS  Google Scholar 

  3. Sun XT, Li L, Long GQ, Zhang GH, Meng ZG et al (2015) Research progress on continuous cropping obstacle of Panax notoginseng. J Ecol 34:885–893. https://doi.org/10.13292/j.1000-4890.2015.0119

    Article  Google Scholar 

  4. Tripathy V, Basak BB, Varghese TS, Saha A (2015) Residues and contaminants in medicinal herbs—a review. Phytochem Lett 14:67–78. https://doi.org/10.1016/j.phytol.2015.09.003

    Article  CAS  Google Scholar 

  5. Tan Y (2017) Study on changes of endophytic root and rhizosphere soil microbial community diversity in continuous cropping obstacle of Panax notoginseng [doctor]: Kunming University of Technology. DOI:https://doi.org/10.27200/d.cnki.gkmlu.2017.000011

  6. Abers M, Schroeder S, Goelz L, Sulser A, St Rose T et al (2021) Antimicrobial activity of the volatile substances from essential oils. BMC Complement Med Ther 21:124. https://doi.org/10.1186/s12906-021-03285-3

    Article  CAS  Google Scholar 

  7. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C: Toxicol Pharmacol 130:325–337. https://doi.org/10.1016/S1532-0456(01)00255-1

    Article  CAS  Google Scholar 

  8. Kuang CL, Lv D, Shen GH, Li SS, Luo QY et al (2018) Chemical composition and antimicrobial activities of volatile oil extracted from Chrysanthemum morifolium Ramat. J Food Sci Technol 55:2786–2794. https://doi.org/10.1007/s13197-018-3203-1

    Article  CAS  Google Scholar 

  9. Soylu S, Yigitbas H, Soylu EM, Kurt S (2010) Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. J Appl Microbiol 103:1021–1030. https://doi.org/10.1111/j.1365-2672.2007.03310.x

    Article  Google Scholar 

  10. Ekpenyong CE, Akpan EE, Daniel NE (2014) Phytochemical constituents, therapeutic applications and toxicological profile of Cymbopogon citratus Stapf (DC) leaf extract. J Pharmacogn Phytochem 3:133–141. https://doi.org/10.1007/springerreference_68380

    Article  CAS  Google Scholar 

  11. Venzon L, Mariano L, Somensi LB, Boeing T, Souza PD et al (2017) Essential oil of Cymbopogon citratus (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice. Biomed Pharmacother 98:118–124. https://doi.org/10.1016/j.biopha.2017.12.020

    Article  CAS  Google Scholar 

  12. Zhang X, Zhang B, Zhang C, Sun G, Sun X (2020) Effect of Panax notoginseng saponins and major anti-obesity components on weight loss. Front Pharmacol 11:601751. https://doi.org/10.3389/fphar.2020.601751

    Article  CAS  Google Scholar 

  13. Zhu MD, Ding L, Kuang Y, Han ZP, Hua J (2008) Inhibitory activity of tea tree oil on mycelial growth and spore germination of Anthracnose in plantain. Food Res Dev 29:134–137. https://doi.org/10.3969/j.issn.1005-6521.2008.06.038

    Article  CAS  Google Scholar 

  14. Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27:514–520. https://doi.org/10.1016/s0968-0004(02)02179-5

    Article  CAS  Google Scholar 

  15. Ravasio S, Dossena L, Martin-Figueroa E, Florencio FJ, Mattevi A et al (2002) Properties of the recombinant ferredoxin-dependent glutamate synthase of synechocystis PCC6803: comparison with the Azospirillum brasilense NADPH-dependent enzyme and its isolated alpha subunit. Biochemistry 41:8120. https://doi.org/10.1021/bi020083r

    Article  CAS  Google Scholar 

  16. Magdalena F, Yasmina FM, Damaso C, Alberto SD, Gislene P (2018) Cell polarity protein Spa2 coordinates Chs2 incorporation at the division site in budding yeast. PLoS Genet 14:e1007299. https://doi.org/10.1371/journal.pgen.1007299

    Article  CAS  Google Scholar 

  17. Lai M, MartinBard CharlesA, Pierson JohnF, Alexander MarkGoe et al (1994) The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway. Gene–Amsterdam 140:41. https://doi.org/10.1016/0378-1119(94)90728-5

    Article  CAS  Google Scholar 

  18. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43. https://doi.org/10.1101/gr.9.1.27

    Article  CAS  Google Scholar 

  19. Hüttel W (2016) Structural diversity in echinocandin biosynthesis: the impact of oxidation steps and approaches toward an evolutionary explanation. Z Naturforsch [C] 72:1–20. https://doi.org/10.1515/znc-2016-0156

    Article  CAS  Google Scholar 

  20. Meyer C, Schmid R, Scriba PC, Wehling M (2010) Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur J Biochem 239:726–731. https://doi.org/10.1111/j.1432-1033.1996.0726u.x

    Article  Google Scholar 

  21. Li QQ, Huo YY, Chen CJ, Zeng ZY, Xu FR et al (2020) Biological activities of two essential oils from Pogostemon cablin and Eupatorium fortunei and their major components against fungi isolated from Panax notoginseng. Chem Biodivers 17:e2000520. https://doi.org/10.1002/cbdv.202000520

    Article  CAS  Google Scholar 

  22. White TJ, Bruns T, Lee S, Taylor J. (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. 315–322 p. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1

  23. Ma YN, Xu FR, Chen CJ, Li QQ, Wang MZ (2019) The beneficial use of essential oils from buds and fruit of Syzygium aromaticum to combat pathogenic fungi of Panax notoginseng - ScienceDirect. Ind Crops Prod 133:185–192. https://doi.org/10.1016/j.indcrop.2019.03.029

    Article  CAS  Google Scholar 

  24. Kubo I, Fujita KI, Kubo A, Nihei KI, Ogura T (2004) Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J Agric Food Chem 52:3329–3332. https://doi.org/10.1021/jf0354186

    Article  CAS  Google Scholar 

  25. Coutinho H, Costa J, Lima EO, Falcão-Silva V, Siqueira-Júnior J (2009) In vitro interference of Hyptis martiusii Benth. & chlorpromazine against an aminoglycoside-resistant Escherichia coli. Indian J Med Res 129:566–568. https://doi.org/10.3109/13880200903382686

    Article  Google Scholar 

  26. Gutierrez J, Barry-Ryan C, Bourke P (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124:91–97. https://doi.org/10.1016/j.ijfoodmicro.2008.02.028

    Article  CAS  Google Scholar 

  27. Gonzalez-Cendales Y, Catanzariti A, Baker B, Mcgrath DJ, Jones DA (2016) Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol 17:448–463. https://doi.org/10.1111/mpp.12294

    Article  CAS  Google Scholar 

  28. Chen CJ, Li QQ, Ma YN, Wang W, Cheng YX et al (2019) Antifungal effect of essential oils from five kinds of Rutaceae plants—avoiding pesticide residue and resistance. Chem Biodivers 16:e1800688. https://doi.org/10.1002/cbdv.201800688

    Article  CAS  Google Scholar 

  29. Wang L, Tiao B, Linxi L, Xiaolong W, C WCK, et al (2021) Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 121:99–113. https://doi.org/10.1016/j.semcdb.2021.04.008

    Article  CAS  Google Scholar 

  30. Stenzel K, Vors J (2019) Sterol biosynthesis inhibitors*. Modern Crop Protect Compounds. 3:761–805. https://doi.org/10.1002/9783527699261.ch19

    Article  CAS  Google Scholar 

  31. Wang WY, Xu C, Chen ZJ, Wen GS, Wei FG et al (2015) Isolation, identification and in vitro growth rate of three pathogenic fungi of Panax notoginseng. Agric Sci Technol 16:1165–1171. https://doi.org/10.16175/j.cnki.1009-4229

    Article  Google Scholar 

  32. Ma YN, Chen CJ, Li QQ, Xu FR, Cheng YX et al (2019) Monitoring antifungal agents of Artemisia annua against Fusarium oxysporum and Fusarium solani, associated with Panax notoginseng root-rot disease. Molecules 24:213. https://doi.org/10.3390/molecules24010213

    Article  CAS  Google Scholar 

  33. Soylu S, Yogitbas H, Soylu EM, Kurt S (2010) Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. J Appl Microbiol 103:1021–1030. https://doi.org/10.1111/j.1365-2672.2007.03310.x

    Article  Google Scholar 

  34. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

  35. Ajayi EO, Sadimenko AP, Afolayan AJ (2016) Data showing chemical compositions of the essential oils of the leaves of Cymbopogon citratus obtained by varying pH of the extraction medium. Data Brief 8:599–604. https://doi.org/10.1016/j.dib.2016.06.019

    Article  CAS  Google Scholar 

  36. Xie Y, Huang Q, Yang F, Lei C (2012) Chemical variation in essential oil of Cryptomeria fortunei from various areas of China. Ind Crops Prod 36:308–312. https://doi.org/10.1016/J.INDCROP.2011.10.023

    Article  CAS  Google Scholar 

  37. Wang H, Liu Y, Wei S, Yan Z (2012) Comparative seasonal variation and chemical composition of essential oils from the leaves and stems of Schefflera heptaphylla using microwave-assisted and conventional hydrodistillation. Ind Crops Prod 36:229–237. https://doi.org/10.1016/J.INDCROP.2011.09.011

    Article  CAS  Google Scholar 

  38. Rao J, Bingcan C, Julian MD (2019) Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annu Rev Food Sci Technol 10:365–387. https://doi.org/10.1146/annurev-food-032818-121727

    Article  CAS  Google Scholar 

  39. Marei G, Rasoul M, Abdelgaleil S (2012) Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic Biochem Physiol 103:56–61. https://doi.org/10.1016/j.pestbp.2012.03.004

    Article  CAS  Google Scholar 

  40. Ye H, Shen S, Xu J, Lin S, Yuan Y et al (2013) Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control 34:619–623. https://doi.org/10.1016/j.foodcont.2013.05.032

    Article  CAS  Google Scholar 

  41. Bassolé BLM, A BB, A LCO, A AJI, et al (2011) Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 18:1070–1074. https://doi.org/10.1016/j.phymed.2011.05.009

    Article  CAS  Google Scholar 

  42. Sousa J, Azerêdo G, Torres R, Vasconcelos M, ConceiçãO M et al (2012) Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. Int J Food Microbiol 154:145–151. https://doi.org/10.1016/j.ijfoodmicro.2011.12.026

    Article  CAS  Google Scholar 

  43. Lopez-Romero JC, González-Ríos H, Borges A, Simões M (2015) Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid Based Complement Altern Med 2015:1–9. https://doi.org/10.1155/2015/795435

    Article  Google Scholar 

  44. Irkin R, Korukluoglu M (2009) Effectiveness of Cymbopogon citratus L. essential oil to inhibit the growth of some filamentous fungi and yeasts. J Med Food 12:193–197. https://doi.org/10.1089/jmf.2008.0108

    Article  CAS  Google Scholar 

  45. Qiu J (2018) Preliminary study on glutamate synthase gene a regulating biofilm formation of Enterococcus faecalis [Doctor]: PLA Air Force Military Medical University.

  46. Lu YE, Luo F, Yang M, Li XH, Lian XM (2011) Effects of inhibiting the expression of glutamate synthase gene on carbon and nitrogen metabolism in Rice. Chinese Sci Life Sci 41:481–493. https://doi.org/10.1360/zc2011-41-6-481

    Article  Google Scholar 

  47. Vriese KD, Pollier J, Goossens A, Beeckman T, Vanneste S (2019) The use of mutants and inhibitors to study sterol biosynthesis in plants. J Exp Bot 72:241–253. https://doi.org/10.1093/jxb/eraa429

    Article  CAS  Google Scholar 

  48. Berg D, Plempel M, Büchel K, Holmwood G, Stroech K (2010) Sterol biosynthesis inhibitors: secondary effects and enhanced in vivo efficacy. Ann NY Acad Sci 544:338–347. https://doi.org/10.1111/j.1749-6632.1988.tb40418.x

    Article  Google Scholar 

  49. Ye LJ, Zhu H, Tian M (2005) Research progress of microbial derived fungal cell wall inhibitors. Foreign Med (Antibiotics). https://doi.org/10.3969/j.issn.1001-8751

    Article  Google Scholar 

  50. Nobel HD, Ende H, Klis FM (2000) Cell wall maintenance in fungi. Trends Microbiol 8:344–345. https://doi.org/10.1016/s0966-842x(00)01805-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (82060683), Yunnan Provincial Science and Technology Department- Applied Basic Research Joint Special Funds of Yunnan University of Traditional Chinese Medicine [2019FF002(-003), 202101AZ070001(-047)], and College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine (202105AG070012YQ01).

Funding

This work was financially supported by the National Natural Science Foundation of China (82060683), Yunnan Provincial Science and Technology Department- Applied Basic Research Joint Special Funds of Yunnan University of Traditional Chinese Medicine [2019FF002(-003), 202101AZ070001(-047)], and College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine (202105AG070012YQ01).

Author information

Authors and Affiliations

Authors

Contributions

XD designed the experiment. JY, TTL, and YYH performed the experiments. XD and JY analyzed the data and wrote the article. HYH and FRX commented the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Xian Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 217 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, T.T., Huo, Y.Y. et al. Cymbopogom Citratus Essential Oils: A Promising Source of Antifungals Against Panax Notoginseng-Associated Pathogenic Fungi. Curr Microbiol 80, 17 (2023). https://doi.org/10.1007/s00284-022-03119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03119-6

Navigation