Skip to main content
Log in

Marinilactibacillus kalidii sp. nov., an Indole Acetic Acid-Producing Endophyte Isolated from a Shoot of Halophyte Kalidium cuspidatum

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-positive, facultatively anaerobic, non-sporulating, motile with single polar flagellum, rod-shaped, indole-3-acetic acid (IAA)-producing bacterium, named M4U5P12T, was isolated from a shoot of Kalidium cuspidatum, Inner Mongolia, China. Strain M4U5P12T grew at pH 6.0–11.0 (optimum 7.5), 4–40 °C (optimum 25 °C), and in the presence of 0–15% (w/v) NaCl (optimum 4%). Positive for catalase, urease, methyl red (M.R.) reaction, and hydrolysis of starch; and negative for oxidase, Voges–Proskauer (V–P) test, and hydrolysis of cellulose. The phylogenetic trees based on the 16S rRNA gene sequences and the whole genome sequences both revealed that it clustered with Marinilactibacillus piezotolerans JCM 12337T (99.3%) and Marinilactibacillus psychrotolerans M13-2T (99.1%). The dDDH and ANIb values of strain M4U5P12T to M. piezotolerans DSM 16108T and M. psychrotolerans M13-2T were 19.3 and 18.9%, and 74.3 and 74.0%, respectively. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, and two unidentified lipids. The major fatty acids were C16:0, C18:1 ω9c, C16:1 ω9c, and C15:1 ω5c. The genomic DNA G + C content was 37.3%. On the basis of physiological, phenotypic, and phylogenetic characteristics, strain M4U5P12T should be classified as a novel species. Therefore, Marinilactibacillus kalidii sp. nov. is proposed, and the type strain is M4U5P12T (= CGMCC 1.17696T = KCTC 43247T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ishikawa M, Nakajima K, Yanagi M, Yamamoto Y, Yamasato K (2003) Marinilactibacillus psychrotolerans gen. nov., sp. nov., a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53(3):711–720. https://doi.org/10.1099/ijsem.0.02446-0

    Article  CAS  PubMed  Google Scholar 

  2. Parte AC (2018) LPSN-list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829. https://doi.org/10.1099/ijsem.0.002786

    Article  PubMed  Google Scholar 

  3. Parte AC, Carbasse JS, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70(11):5607–5612. https://doi.org/10.1099/ijsem.0.004332

    Article  PubMed  PubMed Central  Google Scholar 

  4. Toffin L, Zink K, Kato C, Pignet P, Bidault A, Bienvenu N, Birrien JL, Prieur D (2005) Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. Int J Syst Evol Microbiol 55(1):345–351. https://doi.org/10.1099/ijsem.0.63236-0

    Article  CAS  PubMed  Google Scholar 

  5. Wang S, Yang R, Xu L, Xing YT, Sun JQ (2021) Qingshengfaniella alkalisoli gen. nov., sp. nov., a p-hydroxybenzoate-degrading strain isolated from saline soil. Int J Syst Evol Microbiol 71(3):004719. https://doi.org/10.1099/ijsem.0.004719

    Article  CAS  Google Scholar 

  6. Xing YT, Xu L, Wang HT, Huang XX, Wang S, Sun JQ (2020) Echinicola soli sp. nov., isolated from alkaline saline soil. Int J Syst Evol Microbiol 70(7):4139–4144. https://doi.org/10.1099/ijsem.0.004262

    Article  CAS  PubMed  Google Scholar 

  7. Xu L, Huang XX, Fan DL, Sun JQ (2020) Lysobacter alkalisoli sp. nov., a chitin-degrading strain isolated from saline-alkaline soil. Int J Syst Evol Microbiol 70(2):1273–1281. https://doi.org/10.1099/ijsem.0.003911

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Xu L, Zhang JX, Sun JQ (2020) Sphingomonas suaedae sp. nov., a chitin-degrading strain isolated from rhizosphere soil of Suaeda salsa. Int J Syst Evol Microbiol 70(6):3816–3823. https://doi.org/10.1099/ijsem.0.004238

    Article  CAS  PubMed  Google Scholar 

  9. Xu L, Wang HT, Zhang JX, Zhang H, Wang S, Sun JQ (2020) Flavobacterium alkalisoli sp. nov., isolated from rhizosphere soil of Suaeda salsa. Int J Syst Evol Microbiol 70(6):3888–3898. https://doi.org/10.1099/ijsem.0.004255

    Article  CAS  PubMed  Google Scholar 

  10. Xu L, Zhang H, Xing YT, Li N, Wang S, Sun JQ (2020) Complete Genome Sequence of Sphingobacterium psychroaquaticum Strain SJ-25, an aerobic bacterium capable of suppressing fungal pathogens. Curr Microbiol 77(1):115–122. https://doi.org/10.1007/s00284-019-01789-3

    Article  CAS  PubMed  Google Scholar 

  11. Sun JQ, Xu L, Liu M, Wang XY, Wu XL (2016) Flavobacterium suaedae sp nov., an endophyte isolated from the root of Suaeda corniculata. Int J Syst Evol Microbiol 66:1943–1949. https://doi.org/10.1099/ijsem.0.000967

    Article  CAS  PubMed  Google Scholar 

  12. Sun JQ, Xu L, Guo Y, Li WL, Shao ZQ, Yang YL, Wu XL (2017) Kribbella deserti sp nov., isolated from rhizosphere soil of Ammopiptanthus mongolicus. Int J Syst Evol Microbiol 67(3):692–696. https://doi.org/10.1099/ijsem.0.001697

    Article  CAS  PubMed  Google Scholar 

  13. Thompson JD, Gibson TJ, Plewniak F, Jeanpougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  Google Scholar 

  14. Saitou N, Nei M (1987) The neighbor-joining method-a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  15. Edwards AWF (1996) The origin and early development of the method of minimum evolution for the reconstruction of phylogenetic trees. Syst Biol 45(1):79–91. https://doi.org/10.2307/2413513

    Article  Google Scholar 

  16. Swofford DL, Berlocher SH (1987) Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony. Syst Zool 36(3):293–325. https://doi.org/10.2307/2413068

    Article  Google Scholar 

  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felsenstein J (1985) Confidence limits on phylogenies—an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.2307/2408678

    Article  PubMed  Google Scholar 

  19. Ma JP, Wang Z, Lu P, Wang HJ, Ali SW, Li SP, Huang X (2010) Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol Lett 296:203–209. https://doi.org/10.1111/j.1574-6968.2009.01638.x

    Article  CAS  Google Scholar 

  20. Sun JQ, Xu L, Wang LJ, Wu XL (2015) Draft genome sequence of a Rhodococcus strain isolated from tannery wastewater treatment sludge. Microbiol Resour Announc 3(1):e01463-e1514. https://doi.org/10.1128/genomeA.01463-14

    Article  Google Scholar 

  21. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  PubMed  Google Scholar 

  23. Auch AF, Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134. https://doi.org/10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  24. Besemer J, Borodovsky M (1999) Heuristic approach to deriving models for gene finding. Nucleic Acids Res 27(19):3911–3920. https://doi.org/10.1093/nar/27.19.3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu WH, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq275

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu L, Dong ZB, Fang L, Luo YJ, Wei ZY, Guo HL, Wang Y (2019) OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47(W1):W52–W58. https://doi.org/10.1093/nar/gkz333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PEER J 4:e19001v1. https://doi.org/10.7287/peerj.preprints.1900v1

    Article  Google Scholar 

  28. Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20(1):238. https://doi.org/10.1186/s13059-019-1832-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cherif-Silini H, Silini A, Yahiaoui B, Ouzari I, Boudabous A (2016) Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol 66(3):1087–1097. https://doi.org/10.1007/s13213-016-1194-6

    Article  CAS  Google Scholar 

  30. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Reddy CA, Beveridge TJ (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  31. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing (In Chinese)

    Google Scholar 

  32. Fraser SL, Jorgensen JH (1997) Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 41:2738–2741. https://doi.org/10.1128/AAC.41.12.2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim BC, Jeong WJ, Kim DY, Oh HW, Kim H, Park DS, Bae KS (2009) Paenibacillus pueri sp nov., isolated from Pu’er tea. Int J Syst Evol Microbiol 59:1002–1006. https://doi.org/10.1099/ijs.0.002352-0

    Article  CAS  PubMed  Google Scholar 

  34. Kates M (1986) Techniques of lipidology, 2nd edn. Elsevier, Amsterdam

  35. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark, DE

    Google Scholar 

  36. Schumann P (2011) Peptidoglycan structure. Methods Microbiol 38:101–129. https://doi.org/10.1016/B978-0-12-387730-7.00005-X

    Article  CAS  Google Scholar 

  37. Nutaratat P, Monprasit A, Srisuk N (2017) High-yield production of indole-3-acetic acid by Enterobacter sp DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech 7:15. https://doi.org/10.1007/s13205-017-0937-9

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jing-Nan Liang from Institute of Microbiology of CAS for morphologic observation using electron microscopic, and professor Aharon Oren from the Hebrew University of Jerusalem for naming the species. This work was supported in part by National Natural Science Foundation of China (Grant No. 31960020), Inner Mongolia Science & Technology Plan (Grant No. 2020GG0034), Natural Science Foundation of Inner Mongolia Autonomous Region of China (2021MS03031), and High-Level Talent Start-Up Research Project of Inner Mongolia University (No. 21800-5185133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Quan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XX., Xu, L., Shang, J. et al. Marinilactibacillus kalidii sp. nov., an Indole Acetic Acid-Producing Endophyte Isolated from a Shoot of Halophyte Kalidium cuspidatum. Curr Microbiol 79, 198 (2022). https://doi.org/10.1007/s00284-022-02894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02894-6

Navigation