Skip to main content

Advertisement

Log in

Whole Genome, Functional Annotation and Comparative Genomics of Plant Growth-Promoting Bacteria Pseudomonas aeruginosa (NG61) with Potential Application in Agro-Industry

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A plant growth-promoting Rhizobacteria (PGPR) Pseudomonas aeruginosa (NG61) isolated from rhizosphere of Sunflower plant. The isolate was identified by 16S rRNA gene sequencing (Accession no. MK455763). NG61 showed various plant growth promotion and biocontrol activities like, Phosphate solubilisation, Nitrogen fixation, Ammonia production, IAA production, siderophore production, HCN production. The whole genome sequence of Pseudomonas aeruginosa (NG61) was reported and analysed. The estimated genome size was 6537180 bp with 66.18% of G+C content. The genome encoded 6186 protein-coding genes, 6252 genes were predicted, 66RNA genes. Phylogenetic tree showed that the P. aeruginosa( NG61) was closely related to P.aeruginosa strain DSM 50071. The annotated draft genome has been deposited at the NCBI database under the accession number PRJNA707114 BioProject and BioSample: SAMN18174979. The analysis of genome sequence of P. aeruginosa (NG61) showed various genes encoding plant growth promotion and biocontrol activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data of whole genome was saved as FASTQ files and deposited into National Center for Biotechnology Information under accession numbers of BioProject PRJNA707114 and BioSample: SAMN18174979.

References

  1. Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: 4th International Conference on Plant Pathogen Bacteria Angers France, vol 2, pp 879–882

  2. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. https://doi.org/10.1007/s11104-009-9895-2

  3. Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 32:655–665

    Article  Google Scholar 

  4. Gupta A, Gopal M, Tilak KVBR (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  5. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x

    Article  CAS  PubMed  Google Scholar 

  6. Hutchins SR, Davidson MS, Brierey JA, Brierley CL (1986) Microorganisms in reclamation of metals. Annu Rev Microbiol 40:311–336. https://doi.org/10.1146/annurev.mi.40.100186.001523

    Article  CAS  PubMed  Google Scholar 

  7. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). https://doi.org/10.6064/2012/963401

    Article  Google Scholar 

  8. Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150. https://doi.org/10.3389/fmicb.2011.00150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowallk DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Relzer J, Saler MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964. https://doi.org/10.1038/35023079

    Article  CAS  PubMed  Google Scholar 

  10. Minas K, McEwan NR, Newbold CJ, Scott KP (2011) Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett 325(2):162–169. https://doi.org/10.1111/j.1574-6968.2011.02424.x

    Article  CAS  PubMed  Google Scholar 

  11. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiol 17:362–370

    CAS  Google Scholar 

  12. Nguyen C, Yan W, Le TF (1992) Genetic variability phosphate solubilizing activity of the ectomycorrhizal fungus Laccaria bicolor (Maire) P.D. Plant Soil 143:193–199

    Article  CAS  Google Scholar 

  13. Islam MT, Hossain MM (2012) Plant probiotics in phosphorous nutrition in crops, with special reference to rice. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin, pp 325–363

    Chapter  Google Scholar 

  14. Brick JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538. https://doi.org/10.1128/AEM.57.2.535-538.1991

    Article  Google Scholar 

  15. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  16. Kumar P, Suseelendra G, Desai E, Leo DA, Reddy G (2015) Isolation of Fluorescent Pseudomonas spp. from Diverse Agro-Ecosystems of India and Characterization of their PGPR Traits. Bacteriology Journal 5:13–24. https://doi.org/10.1155/2014/195946

    Article  Google Scholar 

  17. Cappuccino JC, Sherman N (1992) Microbiology: a laboratory manual, 3rd edn. Benjamin/ Cummings Pub.co, New York, pp 125–179

    Google Scholar 

  18. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  19. Bunt JS, Rovira AD (1955) Microbiological studies of some subantarctic soils. J Soil Sci 6:119–128

    Article  CAS  Google Scholar 

  20. Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468. https://doi.org/10.1007/s003740050024

    Article  CAS  Google Scholar 

  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  22. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 8:44(1):16–21. https://doi.org/10.1093/nar/gkw387

  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  26. Crovadore J, Grizard D, Chablais R, Cochard B, Blanc P, Lefort F (2018) Wholegenome sequence of Pseudomonas aeruginosa strain 4014, isolated from soil in France. Microbiol Resour Announc 7:01089–01118. https://doi.org/10.1128/MRA.01089-18

    Article  Google Scholar 

  27. Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  28. Liu H, Liang R, Tao F, Ma C, Liu Y, Liu X, Liu J (2012) Genome sequence of Pseudomonas aeruginosa strain SJTD-1, a bacterium capable of degrading long-chain alkanes and crude oil. J Bacteriol 194:4783–4784. https://doi.org/10.1128/JB.01061-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Norman A, Ciofu O, Amador CI, Høiby N, Jelsbak L (2016) Genome sequence of Pseudomonas aeruginosa strain DK1-NH57388A, a stable mucoid cystic fibrosis isolate. Genome Announc 4:00008–00016. https://doi.org/10.1128/genomeA.00008-16

    Article  Google Scholar 

  30. Alori ET, Babalola OO (2018) Microbial inoculants for improving crop quality and human health in Africa. J Front Micro 9:2213. https://doi.org/10.3389/fmicb.2018.02213

    Article  Google Scholar 

  31. Keswani C, Prakash O, Bharti N, Vílchez JI, Sansinenea E, Lally RD, Borriss R, Singh SP, Gupta VK, Fraceto LF (2019) Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Sci Total Environ 690:841–852. https://doi.org/10.1016/j.scitotenv.2019.07.046

    Article  CAS  PubMed  Google Scholar 

  32. Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197. https://doi.org/10.1007/s11274-017-2364-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatal Agric Biotechnol 3:97–110. ISSN-1878-8181. https://doi.org/10.1016/j.bcab.2013.09.008

  34. Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS (2018) Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS ONE 13:1–28. https://doi.org/10.1371/journal.pone.0204408

    Article  CAS  Google Scholar 

  35. de Werra P, Péchy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75:4162–4174. https://doi.org/10.1128/AEM.00295-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goldstein AH (1996) Involvement of the quinoprotein glucosedehydrogenase inthe solubilization of exogenous phosphates by Gram-negative bacteria. In: TorrianiGorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  37. Nikata T, Sakai Y, Shibata K (1996) Molecular analysis of the phosphate-specific transport (pst) operon of Pseudomonas aeruginosa. Mol Gen Genet 250:692–698. https://doi.org/10.1007/BF02172980

    Article  CAS  PubMed  Google Scholar 

  38. Anba J, Bidaud M, Vasil ML, Lazdunski A (1990) Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulon. J Bacteriol 172(8):4685–4689. https://doi.org/10.1128/jb.172.8.4685-4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Filloux A, Bally M, Soscia C, Murgier M, Lazdunski A (1988) Phosphate regulation in Pseudomonas aeruginosa: cloning of the alkaline phosphatase gene and identification of phoB- and phoR-like genes. Mol Gen Genet. 212(3):510–3. https://doi.org/10.1007/BF00330857

    Article  CAS  PubMed  Google Scholar 

  40. Yu Z, Yang G, Liu X, Wang Y, Zhuang L, Zhou S (2018) Complete genome sequence of the nitrogen-fixing bacterium Azospirillum humicireducens type strain SgZ-5T. Stand Genomic Sci 13:28. https://doi.org/10.1186/s40793-018-0322-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:1–13. https://doi.org/10.1101/cshperspect.a001438

    Article  CAS  Google Scholar 

  42. Thoma R, Hennig M, Sterner R, Kirschner K (2000) Structure and function of mutationally generated monomers of dimeric phosphoribosyl anthranilate isomerase from Thermotoga maritima. Structure 8:265–276. https://doi.org/10.1016/s0969-2126(00)00106-4

    Article  CAS  PubMed  Google Scholar 

  43. Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, Seshagiri S, Schuster SC, Rajesh P, Gupta R (2014) Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS ONE 9:104259. https://doi.org/10.1371/journal.pone.0104259

    Article  CAS  Google Scholar 

  44. Laville J, Blumer C, Von Schroetter C, Gaia V, Defago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHAO. J Bacteriol 180(12):3187–3196. https://doi.org/10.1128/JB.180.12.3187-3196.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, Hassan KA, Varghese N, Elbourne LDH, Paulsen IT, Kyrpides N, Woyke T, Loper JE (2018) Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 20(6):2142–2159. https://doi.org/10.1111/1462-2920.14130

    Article  CAS  PubMed  Google Scholar 

  46. Llamas MA, Sparrius M, Kloet R, Jiménez CR, Vandenbroucke-Grauls C, Bitter W (2006) The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J Bacteriol 188(5):1882–1891. https://doi.org/10.1128/JB.188.5.1882-1891.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dupont CL, Grass G, Rensing C (2011) Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics 3:1109–1118. https://doi.org/10.1039/c1mt00107h

    Article  CAS  PubMed  Google Scholar 

  48. Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evolut Microbiol 64:316–324. https://doi.org/10.1099/ijs.0.054171-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DIC MHRD New Delhi for the financial Assistance.

Funding

The authors are thankful to DIC MHRD New Delhi for the financial Assistance.

Author information

Authors and Affiliations

Authors

Contributions

TR performed the In vitro plant growth-promoting activities. MB carried out genome analysis and written and approved the final manuscript.

Corresponding author

Correspondence to Mahesh Borde.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

All authors approve to submit and publication to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rikame, T., Borde, M. Whole Genome, Functional Annotation and Comparative Genomics of Plant Growth-Promoting Bacteria Pseudomonas aeruginosa (NG61) with Potential Application in Agro-Industry. Curr Microbiol 79, 169 (2022). https://doi.org/10.1007/s00284-022-02845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02845-1

Navigation