Skip to main content
Log in

Response of Milk Performance, Rumen and Hindgut Microbiome to Dietary Supplementation with Aspergillus oryzae Fermentation Extracts in Dairy Cows

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fungal additives had beneficial effects on milk performance in dairy cows. Previous studies investigating the effects of fungal additives mainly focused on the rumen, such influences on the hindgut remain limited. This study aimed to investigate the effects of Aspergillus oryzae fermentation extracts (AOE) on the milk performance and microbiome in the rumen and hindgut using 16S rRNA gene sequencing. Twenty lactating multiparous Holstein cows were randomly assigned to control and treatment (5 g AOE per cow per day). The results showed that AOE increased the milk yield, milk protein and lactose concentration, but did not affect the milk fat concentration. Feeding AOE did not affect the ruminal VFA pattern, pH, NH3-N, and microbial cell protein production, but decreased lipopolysaccharide concentration and tended to decrease lactate concentration. The addition of AOE increased the fecal pH and the proportions of propionate, isovalerate and valerate, and decreased the acetate to propionate ratio. PCoA analysis showed that AOE did not affect the overall ruminal bacterial population composition. Only three genera changed slightly in relative abundance. In the feces, PCoA analysis showed that AOE changed the bacterial population composition. Feeding AOE increased the relative abundances of Ruminococcaceae UCG-010 and unclassified Clostridiales vadinBB60 group, and decreased Christensenellaceae R-7 group, unclassified Muribaculaceae, Prevotellaceae UCG-001 and Romboutsia. Spearman correlation showed unclassified Clostridiales vadinBB60 group was positively correlated with propionate proportion. Overall, we present that AOE not only functioned in rumen, but also in hindgut. The hindgut microbiome changes might play an important role in the milk performance improvement of dairy cows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw data of Illumina MiSeq sequences were submitted to the Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/Traces/sra/) under Accession No. SRP217364.

References

  1. Kellems RO, Lagerstedt A, Wallentine MV (1990) Effect of feeding Aspergillus oryzae fermentation extract or Aspergillus oryzae plus yeast culture plus mineral and vitamin supplement on performance of Holstein cows during a complete lactation. J Dairy Sci 73(10):2922–2928

    Article  CAS  PubMed  Google Scholar 

  2. Poppy GD, Rabiee AR, Lean IJ, Sanchez WK, Dorton KL, Morley PS (2012) A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J Dairy Sci 95(10):6027–6041

    Article  CAS  PubMed  Google Scholar 

  3. Sallam SMA, Abdelmalek MLR, Kholif AE, Zahran SM, Ahmed MH, Zeweil HS, Attia MFA, Matloup OH, Olafadehan OA (2019) The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Anim Biotechnol 17:1–7

    Google Scholar 

  4. Nisbet DI, Martin SA (1990) Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl Environ Microbiol 56:3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Denigan ME, Huber JT, Alhadhrami G, Al-Dehneh A (1992) Influence of feeding varying levels of Amaferm on performance of lactating dairy cows. J Dairy Sci 75:1616–1621

    Article  CAS  PubMed  Google Scholar 

  6. Yoon IK, Stern MD (1996) Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows. J Dairy Sci 79:411–417

    Article  CAS  PubMed  Google Scholar 

  7. Pinloche E, Mcewan N, Marden JP, Bayourthe C, Auclair E, Newbold CJ (2013) The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE 8(7):e67824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Varel VH, Kreikemeier KK (1994) Influence of feeding Aspergillus oryzae fermentation extract (Amaferm) on in situ fiber degradation, ruminal fermentation, and microbial protein synthesis in nonlactating cows fed alfalfa or bromegrass hay. J Anim Sci 72(7):1814–1822

    Article  CAS  PubMed  Google Scholar 

  9. Mullins CR, Mamedova LK, Carpenter AJ, Ying Y, Allen MS, Yoon I, Bradford BJ (2013) Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product. J Dairy Sci 96(9):5872–5881

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Y, Ogunade IM, Qi S, Hackmann TJ, Staples CR, Adesogan AT (2017) Effects of the dose and viability of Saccharomyces cerevisiae .1. Diversity of ruminal microbes as analyzed by illumina miseq sequencing and quantitative PCR. J Dairy Sci 100(1):325–342

    Article  CAS  PubMed  Google Scholar 

  11. Sandri M, Manfrin C, Pallavicini A, Stefanon B (2014) Microbial biodiversity of the liquid fraction of rumen content from lactating cows. Animal 8(4):572–579

    Article  CAS  PubMed  Google Scholar 

  12. Hoover WH (1978) Digestion and absorption in the hindgut of ruminants. J Anim Sci 46:1789–1799

    Article  CAS  PubMed  Google Scholar 

  13. McNeil NI (1988) Nutritional implications of human and mammalian large intestinal function. World Rev Nutr Diet 56:1–42

    Article  CAS  PubMed  Google Scholar 

  14. Argenzio RA, Miller N, von Engelhardt W (1975) Effect of volatile fatty acids on water and ion absorption from the goat colon. Am J Physiol 229:997–1002

    Article  CAS  PubMed  Google Scholar 

  15. Engelhardt WV, Rechkemmer G (1983) The physiological effects of short-chain fatty acids in the hind gut. In: Wallace G, Bell L (eds) Fibre in human and animal nutrition. The Royal Society of New Zealand, Palmerston North, pp 149–155

    Google Scholar 

  16. Higginbotham GE, Collar CA, Aseltine MS, Bath DL (1994) Effect of yeast culture and Aspergillus oryzae extract on milk yield in a commercial dairy herd. J Dairy Sci 77(1):343–348

    Article  CAS  PubMed  Google Scholar 

  17. Jin W, Li Y, Cheng Y, Mao S, Zhu W (2018) The bacterial and archaeal community structures and methanogenic potential of the cecal microbiota of goats fed with hay and high-grain diets. Antonie Van Leeuwenhoek 111(11):2037–2049

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Xu T, Zhu W, Mao S (2014) High-grain feeding alters caecal bacterial microbiota composition and fermentation and results in caecal mucosal injury in goats. Br J Nutr 112(3):416–427

    Article  CAS  PubMed  Google Scholar 

  19. Ye H, Liu J, Feng P, Zhu W, Mao S (2016) Grain-rich diets altered the colonic fermentation and mucosa-associated bacterial communities and induced mucosal injuries in goats. Sci Rep 6:20329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. NRC (2001) National research council nutrient requirements of dairy cattle. National Academy of Sciences, Washington

    Google Scholar 

  21. Shen JS, Chai Z, Song LJ, Liu JX, Wu YM (2012) Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J Dairy Sci 95:5978–5984

    Article  CAS  PubMed  Google Scholar 

  22. Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 8:237

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  24. Barker SB, Summerson WH (1941) The colorimetric determination of lactic acid in biological material. J Biol Chem 138:535–554

    Article  CAS  Google Scholar 

  25. Makkar HPS, Sharma OP, Dawra RK, Negi SS (1982) Simple determination of microbial protein in rumen liquor. J Dairy Sci 65:2170–2173

    Article  CAS  PubMed  Google Scholar 

  26. Mao SY, Zhang RY, Wang DS, Zhu WY (2013) Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 24:12–19

    Article  CAS  PubMed  Google Scholar 

  27. Zhang R, Yoon I, Zhu W, Mao S (2013) Effect of Saccharomyces cerevisiae fermentation product on lactation performance and lipopolysaccharide concentration of dairy cows. Asian Australas J Anim Sci 26(8):1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58:572–582

    Article  CAS  PubMed  Google Scholar 

  29. Wright ADG, Dehority BA, Lynn DH (1997) Phylogeny of the rumen ciliates Entodinium, Epidinium and Polyplastron (Litostomatea: Entodiniomorphida) inferred from small subunit ribosomal RNA sequences. J Eukaryot Microbiol 44:61–67

    Article  CAS  PubMed  Google Scholar 

  30. Behrendt L, Larkum AW, Trampe E, Norman A, Sørensen SJ, Kühl M (2012) Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella. ISME J 6:1222–1237

    Article  CAS  PubMed  Google Scholar 

  31. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  35. Langille MGI, Zaneveld J, Caporaso JG, Mcdonald D, Dan K, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dixon P, VEGAN (2003) A package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  37. Martin SA, Nisbet DJ (1992) Effect of direct-fed microbials on rumen microbial fermentation. J Dairy Sci 75:1736–1744

    Article  CAS  PubMed  Google Scholar 

  38. Wiedmeier RD, Arambel MJ, Walters JL (1987) Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. J Dairy Sci 70(10):2063–2068

    Article  CAS  PubMed  Google Scholar 

  39. Gomez-Alarcon RA, Dudas C, Huber JT (1989) Influence of culture of Aspergillus oryzae on rumen and total tract digestibility of dietary components. J Dairy Sci 73(3):703–710

    Article  Google Scholar 

  40. Gozho GN, Krause DO, Plaizier JC (2007) Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J Dairy Sci 90(2):856–866

    Article  CAS  PubMed  Google Scholar 

  41. Plaizier JC, Krause DO, Gozho GN, McBride BW (2008) Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 176(1):21–23

    Article  CAS  PubMed  Google Scholar 

  42. O’Herrin SM, Kenealy WR (1993) Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Appl Environ Microbiol 59(3):748–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harrison CA, Laubitz D, Ohland CL, Midura-Kiela MT, Patil K, Besselsen DG, Jamwal DR, Jobin C, Ghishan FK, Kiela PR (2018) Microbial dysbiosis associated with impaired intestinal Na+/H+ exchange accelerates and exacerbates colitis in ex-germ free mice. Mucosal Immunol 11:1329–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2018YFD0501600).

Author information

Authors and Affiliations

Authors

Contributions

JZ conducted the animal experiment, samplings, chemical analyses. WJ performed the statistical analysis and drafted the manuscript. YJ revised critically this manuscript. FX analyzed the microbial sequencing data. SM conceived this study.

Corresponding author

Correspondence to Wei Jin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

The animal experimental design and procedures of this study were supported by the Animal Care and Use Committee of Nanjing Agricultural University following the requirements of the Regulations for the Administration of Affairs Concerning Experimental Animals (The State Science and Technology Commission of P. R. China, 1988. No. SYXK (Su) 2015-0656).

Consent for Publication

All the authors have read the manuscript and have approved this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jin, W., Jiang, Y. et al. Response of Milk Performance, Rumen and Hindgut Microbiome to Dietary Supplementation with Aspergillus oryzae Fermentation Extracts in Dairy Cows. Curr Microbiol 79, 113 (2022). https://doi.org/10.1007/s00284-022-02790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02790-z

Navigation