Skip to main content
Log in

Pseudaminobacter soli sp. nov., Isolated from Paddy Soil Contaminated with Heavy Metals

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram stain-negative, aerobic, rod-shaped strain, designated HC19T, was isolated from heavy metals contaminated paddy soil. The 16S rRNA gene-based phylogenetic analysis indicated that strain HC19T belonged to the genus Pseudaminobacter, and shared 97.0% 16S rRNA gene sequence similarity with P. manganicus JH-7T, and less than 97% similarities with other type strains belonging to the genus. The major cellular fatty acids were C19:0 cyclo ω8c (55.0%) and C18: 1ω7c (18.7%). The major quinone was ubiquinone Q-10. The major polar lipids were phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. The average nucleotide identity and digital DNA–DNA hybridization values between the genomes of HC19T and P. manganicus JH-7T were 68.0% and 22%, respectively. The G+C content of the genomic DNA was 63.3 mol%. On the basis of phenotypic, chemotaxonomic, and genotypic data, strain HC19T is considered as a novel species in the genus Pseudaminobacter, for which the name Pseudaminobacter. soli sp. nov. is proposed. The type strain is HC19T (= KCTC 82870T = CCTCC AB 2021107T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All authors have declared that all data are availability.

References

  1. Kämpfer P, Müller C, Mau M et al (1999) Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49:887–897. https://doi.org/10.1099/00207713-49-2-887

    Article  PubMed  Google Scholar 

  2. Mergaert J, Swings J (2005) Family IV. Phyllobacteriaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology (The proteobacteria) part C (The alpha-, beta-, delta-, and epsilonproteobacteria), vol 2, 2nd edn. Springer, New York, p 393

    Google Scholar 

  3. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7. https://doi.org/10.1128/aem.49.1.1-7.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui XL, Mao PH, Zeng M et al (2001) Streptimonospora salina gen. nov., sp nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Micr 51:357–363. https://doi.org/10.1099/00207713-51-2-357

    Article  CAS  Google Scholar 

  5. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Micr 62:716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  CAS  Google Scholar 

  6. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  9. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  10. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  11. Felsenstein J (1985) Confidence limits on phylogenies-an approach using the bootstarp. Evolution 39:783–791. https://doi.org/10.2307/2408678

    Article  PubMed  Google Scholar 

  12. Chun J, Oren A, Ventosa A et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Micr 68:461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  Google Scholar 

  13. Yoon SH, Sm Ha, Lim J et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Micr 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  Google Scholar 

  14. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  16. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteriat. Appl Environ Microbiol 44(4):992–993. https://doi.org/10.1128/AEM.44.4.992-993.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lim YK, Park SN, Lee WP et al (2019) Lautropia dentalis sp. nov., isolated from human dental plaque of a gingivitis lesion. Curr Microbiol 76:1369–1373. https://doi.org/10.1007/s00284-019-01761-1

    Article  CAS  PubMed  Google Scholar 

  18. Collins M, Pirouz T, Goodfellow M et al (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230. https://doi.org/10.1099/00221287-100-2-221

    Article  CAS  PubMed  Google Scholar 

  19. Groth I, Schumann P, Weiss N et al (1996) Agrococcus jenensis gen nov, sp nov, a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239. https://doi.org/10.1099/00207713-46-1-234

    Article  CAS  PubMed  Google Scholar 

  20. Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  21. Li JH, Huang J, Liao SJ et al (2017) Pseudaminobacter manganicus sp nov., isolated from sludge of a manganese mine. Int J Syst Evol Micr 67:1589–1594. https://doi.org/10.1099/ijsem.0.001765

    Article  CAS  Google Scholar 

  22. Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Micr 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  Google Scholar 

  23. Meier-Kolthoff JP, Auch AF, Klenk HP (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Heidelberg, pp 371–406

    Chapter  Google Scholar 

  25. Yang HC, Rosen BP (2016) New mechanisms of bacterial arsenic resistance. Biomed J 39:5–13. https://doi.org/10.1016/j.bj.2015.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322. https://doi.org/10.1093/femsre/fuv050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Natural Science Foundation of China (Grant Nos. 31870092 and 31970108).

Author information

Authors and Affiliations

Authors

Contributions

JQ, JZ, KZ and JH carried out the concepts. JL and ST participated in the research and analyzed the data. YJ and FZ provided assistances for literature search and data acquisition. KZ drafted the manuscript. JQ, JZ and JH performed manuscript review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiguo Qiu.

Ethics declarations

Conflict of interest

The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. All the authors declare that they have no conflict of interest.

Ethical Approval

The authors have declared that no ethical issues exist.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the author.

Consent to Participate

All authors agree to have participated in the research proposed to be published.

Consent for Publication

All authors agree to be published in the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences are MW664033.2 (Sanger sequencing), while for the whole genome of strains HC19T are JAGWCR000000000.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5017 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Tang, S., Jiang, Y. et al. Pseudaminobacter soli sp. nov., Isolated from Paddy Soil Contaminated with Heavy Metals. Curr Microbiol 79, 19 (2022). https://doi.org/10.1007/s00284-021-02717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02717-0

Navigation