Skip to main content
Log in

Evolution of Subfamily I.1 Lipases in Pseudomonas aeruginosa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The gram-negative Pseudomonas aeruginosa is an opportunistic human pathogen that contains two different types of strains: the “classical” and the “outlier”. In the “classical” strain, its bacterial subfamily I.1 lipases, such as LipA and LipC in P. aeruginosa PAO1, play critical roles in its pathogenicity. However, less is known about the subfamily I.1 lipases in the “outlier” strain, nor the evolution paths of those lipases in both types of P. aeruginosa strains. Our genome-scale investigation on I.1 lipases across different bacterial strains demonstrates the presence of one LipA-like and one new type of I.1 lipase (LipC2) in those “outlier” strains. The related genomic islands analyses further suggest that the LipC counterpart gene in the “outlier” strain was lost by gene truncation. In addition, the evolutionary analyses also indicates the horizontal LipC2 gene transfer from other gammaproteobacterial species, as well as the horizontal LipA gene transfer between two different phyla, both suggesting that the gene transfer of bacterial I.1 lipases might occur in different taxonomical levels. Our results not only provide an evidence to understand the pathogenicity among different P. aeruginosa strains, but add to the knowledge of I.1 lipase evolution in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klockgether J, Cramer N, Wiehlmann L et al (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:1–18. https://doi.org/10.3389/fmicb.2011.00150

    Article  CAS  Google Scholar 

  2. Tielen P, Kuhn H, Rosenau F et al (2013) Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa. BMC Microbiol 13:159–170. https://doi.org/10.1186/1471-2180-13-159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Georgescu M, Gheorghe I, Curutiu C et al (2016) Virulence and resistance features of Pseudomonas aeruginosa strains isolated from chronic leg ulcers. BMC Infect Dis 16:3–9. https://doi.org/10.1186/s12879-016-1396-3

    Article  CAS  Google Scholar 

  4. Nardini M, Lang DA, Liebeton K et al (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. J Biol Chem 275:31219–31225. https://doi.org/10.1074/jbc.M003903200

    Article  CAS  PubMed  Google Scholar 

  5. Funken H, Knapp A, Vasil ML et al (2011) The lipase lipA (PA2862) but not lipC (PA4813) from Pseudomonas aeruginosa influences regulation of pyoverdine production and expression of the sigma factor PvdS. J Bacteriol 193:5858–5860. https://doi.org/10.1128/JB.05765-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez A, Ostrovsky P, Nunn DN (1999) LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34:317–326. https://doi.org/10.1046/j.1365-2958.1999.01601.x

    Article  CAS  PubMed  Google Scholar 

  7. Rosenau F, Isenhardt S, Gdynia A et al (2010) Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett 309:25–34. https://doi.org/10.1111/j.1574-6968.2010.02017.x

    Article  CAS  PubMed  Google Scholar 

  8. Rosenau F, Jaeger KE (2000) Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82:1023–1032. https://doi.org/10.1016/S0300-9084(00)01182-2

    Article  CAS  PubMed  Google Scholar 

  9. Bofill C, Prim N, Mormeneo M et al (2010) Differential behaviour of Pseudomonas sp. 42A2 LipC, a lipase showing greater versatility than its counterpart LipA. Biochimie 92:307–316. https://doi.org/10.1016/j.biochi.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  10. Sood U, Hira P, Kumar R et al (2019) Comparative genomic analyses reveal core-genome-wide genes under positive selection and major regulatory hubs in outlier strains of Pseudomonas aeruginosa. Front Microbiol 10:53–75. https://doi.org/10.3389/fmicb.2019.00053

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roy PH, Tetu SG, Larouche A et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE 5:1–10. https://doi.org/10.1371/journal.pone.0008842

    Article  CAS  Google Scholar 

  12. Sood U, Singh DN, Hira P et al (2020) Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. J Biotechnol 307:98–106. https://doi.org/10.1016/j.jbiotec.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  13. Sentausa E, Basso P, Berry A et al (2020) Insertion sequences drive the emergence of a highly adapted human pathogen. Microb Genom 6:1–15. https://doi.org/10.1099/mgen.0.000265

    Article  CAS  Google Scholar 

  14. Sullivan ER, Leahy JG, Colwell RR (1999) Cloning and sequence analysis of the lipase and lipase chaperone-encoding genes from Acinetobacter calcoaceticus RAG-1, and redefinition of a Proteobacterial lipase family and an analogous lipase chaperone family. Gene 230:277–285. https://doi.org/10.1016/S0378-1119(99)00026-8

    Article  CAS  PubMed  Google Scholar 

  15. Ondov BD, Treangen TJ, Melsted P et al (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0997-x

    Article  CAS  Google Scholar 

  16. Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:256–259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  Google Scholar 

  17. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397. https://doi.org/10.1016/S0958-1669(02)00341-5

    Article  CAS  PubMed  Google Scholar 

  18. Rosenau F, Tommassen J, Jaeger KE (2004) Lipase-specific foldases. ChemBioChem 5:152–161. https://doi.org/10.1002/cbic.200300761

    Article  CAS  PubMed  Google Scholar 

  19. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Minh BQ, Schmidt HA, Chernomor O et al (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK et al (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  PubMed  Google Scholar 

  23. El-gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:427–432. https://doi.org/10.1093/nar/gky995

    Article  CAS  Google Scholar 

  24. Bertelli C, Laird MR, Williams KP et al (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35. https://doi.org/10.1093/nar/gkx343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gabrielaite M, Johansen HK, Molin S et al (2020) Gene loss and acquisition in lineages of Pseudomonas aeruginosa evolving in cystic fibrosis patient airways. MBio 11:1–16. https://doi.org/10.1128/mBio.02359-20

    Article  Google Scholar 

  26. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu L, Niu B, Zhu Z et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. https://doi.org/10.1093/bioinformatics/bts565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cazares A, Moore MP, Hall JPJ et al (2020) A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 11:1–13. https://doi.org/10.1038/s41467-020-15081-7

    Article  CAS  Google Scholar 

  29. Cao H, Xia T, Li Y et al (2019) Uncoupled quorum sensing modulates the interplay of virulence and resistance in a multidrug-resistant clinical Pseudomonas aeruginosa isolate belonging to the MLST550 clonal complex. Antimicrob Agents Chemother 63:1–15. https://doi.org/10.1128/AAC.01944-18

    Article  Google Scholar 

  30. Xin XF, Kvitko B, He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316–328. https://doi.org/10.1038/nrmicro.2018.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Calderón CE, Ramos C, De Vicente A, Cazorla FM (2015) Comparative genomic analysis of Pseudomonas chlororaphis PCL1606 reveals new insight into antifungal compounds involved in biocontrol. Mol Plant-Microbe Interact 28:249–260. https://doi.org/10.1094/MPMI-10-14-0326-FI

    Article  CAS  PubMed  Google Scholar 

  32. Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665. https://doi.org/10.1016/S0140-6736(47)91528-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Battle SE, Rello J, Hauser AR (2009) Genomic islands of Pseudomonas aeruginosa. FEMS Microbiol Lett 290:70–78. https://doi.org/10.1111/j.1574-6968.2008.01406.x

    Article  CAS  PubMed  Google Scholar 

  34. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  35. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:1–9. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  36. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathee K, Narasimhan G, Valdes C et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105. https://doi.org/10.1073/pnas.0711982105

    Article  PubMed  PubMed Central  Google Scholar 

  38. Redder P, Hausmann S, Khemici V et al (2015) Bacterial versatility requires DEAD-box RNA helicases. FEMS Microbiol Rev 39:392–412. https://doi.org/10.1093/femsre/fuv011

    Article  CAS  PubMed  Google Scholar 

  39. Toutain-Kidd CM, Kadivar SC, Bramante CT et al (2009) Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA. Antimicrob Agents Chemother 53:136–145. https://doi.org/10.1128/AAC.00500-08

    Article  CAS  PubMed  Google Scholar 

  40. König B, Jaeger KE, Sage AE et al (1996) Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes). Infect Immun 64:3252–3258. https://doi.org/10.1128/iai.64.8.3252-3258.1996

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Wang for his constructive comments on this manuscript.

Funding

There is no specific funding support for this research.

Author information

Authors and Affiliations

Authors

Contributions

ZZ and XZ conceived and designed the experiments. ZZ performed experiments, analyzed the experimental data, and drafted the manuscript. XZ revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenghong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, X. Evolution of Subfamily I.1 Lipases in Pseudomonas aeruginosa. Curr Microbiol 78, 3494–3504 (2021). https://doi.org/10.1007/s00284-021-02589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02589-4

Navigation