Skip to main content
Log in

A Preliminary Study on Probiotic Characteristics of Sporosarcina spp. for Poultry Applications

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Probiotics are well known for their wide range of beneficial activities. However, recent use of probiotic Bifidobacterium, Enterococcus, and Lactobacillus spp. has been plagued by certain disadvantages such as complex growth requirements, high maintenance cost, susceptibility to the gastrointestinal environment, pathogenic gene transfer, non-standardized dosage, cell lysis at extreme acidic pH, widespread antibiotic resistance, and lower bacterial viability due to the lack of spore formation. Therefore, spore-forming bacteria belonging to Sporosarcina genus such as pasteurii, globispora, and psychrophila were assessed for probiotic characteristics such as biofilm formation, intestinal adhesion, acid and bile tolerance, antibiotic sensitivity, and anti-pathogenic activity. This ensures bacterial viability under gastrointestinal conditions and enabled the same to colonize effectively in the intestinal lumen (in vitro). The bacterial cell counts ranging from 6.59 to 6.91 log(CFU/mL) was observed for Sporosarcina spp. after 16 h. This indicated that there is no significant difference in the cell counts (P-value = 0.90). The cell counts of Sporosarcina spp. ranging from 5.57 to 5.93 log(CFU/mL) displayed strong acid tolerance at pH 2. They were also viable at higher bile (0.5%) concentration. Among the Sporosarcina spp., pasteurii showed better tolerance (6.90 log(CFU/mL)) even after 16 h. Among the selected bacteria, Sporosarcina psychrophila was more susceptible to teicoplanin and meropenem with an inhibition zone of 30 mm. Maximum antagonistic activity was observed against Serratia marcescens (with inhibition zone up to 15 mm). Our results suggest that bacteria belonging to Sporosarcina genus possess all the required characteristics to be used as potential poultry probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Joint FAO/WHO Expert Consultation working group report

  2. Kabir SML (2009) The role of probiotics in the poultry industry. Int J Mol Sci 10:3531–3546. https://doi.org/10.3390/ijms10083531

    Article  CAS  Google Scholar 

  3. Jin LZ, Ho YW, Abdullah N, Jalaludin S (1997) Probiotics in poultry: modes of action. Worlds Poult Sci 53:351–368. https://doi.org/10.1079/WPS19970028

    Article  Google Scholar 

  4. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  PubMed  Google Scholar 

  5. Fuller R (2001) The chicken gut microflora and probiotic supplements. J Poult Sci 38:189–196. https://doi.org/10.2141/jpsa.38.189

    Article  Google Scholar 

  6. Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar SK, Côté C, Ramirez AA, Godbout S (2018) Use of antibiotics in broiler production: global impacts and alternatives. Anim Nutr 4:170–178. https://doi.org/10.1016/j.aninu.2018.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gueimonde M, Sánchez B, Reyes-Gavilán CGD, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202. https://doi.org/10.3389/fmicb.2013.00202

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aquilanti L, Garofalo C, Osimani A, Silvestri G, Vignaroli C, Clementi F (2007) Isolation and molecular characterization of antibiotic-resistant lactic acid bacteria from poultry and swine meat products. J Food Prot 70:557–565. https://doi.org/10.4315/0362-028x-70.3.557

    Article  CAS  PubMed  Google Scholar 

  9. Dec M, Urban-Chmiel R, Stępień-Pyśniak D, Wernicki A (2017) Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathog 9:54. https://doi.org/10.1186/s13099-017-0203-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shazali N, Foo HL, Loh TC, Choe DW, Rahim RA (2014) Prevalence of antibiotic resistance in lactic acid bacteria isolated from the faeces of broiler chicken in Malaysia. Gut Pathog 6:1. https://doi.org/10.1186/1757-4749-6-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cauwerts K, Pasmans F, Devriese LA, Martel A, Haesebrouck F, Decostere A (2006) Cloacal Lactobacillus isolates from broilers show high prevalence of resistance towards macrolide and lincosamide antibiotics. Avian Pathol 35:160–164. https://doi.org/10.1080/03079450600598137

    Article  CAS  PubMed  Google Scholar 

  12. Aarestrup FM, Bager F, Andersen JS (2000) Association between the use of avilamycin for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers: epidemiological study and changes over time. Microb Drug Resist 6:71–75. https://doi.org/10.1089/mdr.2000.6.71

    Article  CAS  PubMed  Google Scholar 

  13. Stobberingh E, van den Bogaard A, London N, Driessen C, Top J, Willems R (1999) Enterococci with glycopeptide resistance in turkeys, turkey farmers, turkey slaughterers, and (sub)urban residents in the south of The Netherlands: evidence for transmission of vancomycin resistance from animals to humans? Antimicrob Agents Chemother 43:2215–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brtková A, Bujdáková H (2009) Antibiotic resistance in Enterococcus isolates from poultry swabs in Slovakia. J Food Nutr Res 48:121–128

    Google Scholar 

  15. Kolar M, Pantůček R, Bardoň J, Vágnerová I, Typovská H, Válka I, Doškař J (2002) Occurrence of antibiotic-resistant bacterial strains isolated in poultry. Vet Med 47:52–59. https://doi.org/10.17221/5803-VETMED

    Article  CAS  Google Scholar 

  16. Tyson GH, Nyirabahizi E, Crarey E, Kabera C, Lam C, Rice-Trujillo C, McDermott PF, Tate H (2017) Prevalence and antimicrobial resistance of Enterococci isolated from retail meats in the United States, 2002 to 2014. Appl Environ Microbiol 84:e01902–e01917. https://doi.org/10.1128/AEM.01902-17

    Article  PubMed  PubMed Central  Google Scholar 

  17. Obeng AS, Rickard H, Ndi O, Sexton M, Barton M (2013) Comparison of antimicrobial resistance patterns in enterococci from intensive and free range chickens in Australia. Avian Pathol 42:45–54. https://doi.org/10.1080/03079457.2012.757576

    Article  CAS  PubMed  Google Scholar 

  18. Galopin S, Cattoir V, Leclercq R (2009) A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii. FEMS Microbiol Lett 296:185–189. https://doi.org/10.1111/j.1574-6968.2009.01633.x

    Article  CAS  PubMed  Google Scholar 

  19. Girlich D, Leclercq R, Naas T, Nordmann P (2007) Molecular and biochemical characterization of the chromosome-encoded class A β-Lactamase BCL-1 from Bacillus clausii. Antimicrob Agents Chemother 51:4009–4014. https://doi.org/10.1128/AAC.00537-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Agersø Y, Jensen LB, Givskov M, Roberts MC (2002) The identification of a tetracycline resistance gene tet (M), on a Tn916-like transposon, in the Bacillus cereus group. FEMS Microbiol Lett 214:251–256. https://doi.org/10.1111/j.1574-6968.2002.tb11355.x

    Article  PubMed  Google Scholar 

  21. Bozdogan B, Galopin S, Leclercq R (2004) Characterization of a new erm-related macrolide resistance gene present in probiotic strains of Bacillus clausii. Appl Environ Microbiol 70:280–284. https://doi.org/10.1128/AEM.70.1.280-284.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Hoek AH, Mayrhofer S, Domig KJ, Aarts HJ (2008) Resistance determinant erm (X) is borne by transposon Tn5432 in Bifidobacterium thermophilum and Bifidobacterium animalis subsp. lactis. Int J Antimicrob Agents 31:544–548. https://doi.org/10.1016/j.ijantimicag.2008.01.025

    Article  CAS  PubMed  Google Scholar 

  23. Kazimierczak KA, Flint HJ, Scott KP (2006) Comparative analysis of sequences flanking tet (W) resistance genes in multiple species of gut bacteria. Antimicrob Agents Chemother 50:2632–2639. https://doi.org/10.1128/AAC.01587-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucet-Populaire F (2005) Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother 55:38–44. https://doi.org/10.1093/jac/dkh495

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Latorre JD, Khatri B, Kown YM, Kong BW, Teague KD, Graham LE, Wolfenden AD, Mahaffey BD, Baxter M, Hernandez-Velasco X, Merino-Guzman R, Hargis BM, Tellez G (2017) Characterization and evaluation of lactic acid bacteria candidates for intestinal epithelial permeability and Salmonella typhimurium colonization in neonatal turkey poults. Poult Sci 97:515–521. https://doi.org/10.3382/ps/pex311

    Article  CAS  Google Scholar 

  26. Beirão BCB, Ingberman M, Fávaro C Jr, Mesa D, Bittencourt LC, Fascina VB, Caron LF (2018) Effect of an Enterococcus faecium probiotic on specific IgA following live Salmonella enteritidis vaccination of layer chickens. Avian Pathol 47:325–333. https://doi.org/10.1080/03079457.2018.1450487

    Article  PubMed  Google Scholar 

  27. Santini C, Baffoni L, Gaggia F, Granata M, Gasbarri R, Di Gioia D, Biavati B (2010) Characterization of probiotic strains: an application as feed additives in poultry. Int J Food Microbiol 141:S98–S108. https://doi.org/10.1016/j.ijfoodmicro.2010.03.039

    Article  PubMed  Google Scholar 

  28. Tactacan GB, Schmidt JK, Miille MJ, Jimenez DR (2013) A Bacillus subtilis (QST 713) spore-based probiotic for necrotic enteritis control in broiler chickens. J Appl Poult Res 22:825–831. https://doi.org/10.3382/japr.2013-00730

    Article  Google Scholar 

  29. Moretti AF, Gamba RR, Puppo J, Malo N, Gomez-Zavaglia A, Pelaez AL, Golowczyc MA (2017) Incorporation of Lactobacillus plantarum and zeolites in poultry feed can reduce aflatoxin B1 levels. J Food Sci Technol 55:431–436. https://doi.org/10.1007/s13197-017-2923-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Estrada A, Wilkie DC, Drew M (2001) Administration of Bifidobacterium bifidum to chicken broilers reduces the number of carcass condemnations for cellulitis at the abattoir. J Appl Poult Res 10:329–334. https://doi.org/10.1093/japr/10.4.329

    Article  Google Scholar 

  31. Shu Q, Gill HS (2001) A dietary probiotic (Bifidobacterium lactis HN019) reduces the severity of Escherichia coli O157:H7 infection in mice. Med Microbiol Immunol 189:147–152. https://doi.org/10.1007/s430-001-8021-9

    Article  CAS  PubMed  Google Scholar 

  32. Cao GT, Zeng XF, Chen AG, Zhou L, Zhang L, Xiao YP, Yang CM (2013) Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci 92:2949–2955. https://doi.org/10.3382/ps.2013-03366

    Article  CAS  PubMed  Google Scholar 

  33. Forte C, Manuali E, Abbate Y, Papa P, Vieceli L, Tentellini M, Trabalza-Marinucci M, Moscati L (2018) Dietary Lactobacillus acidophilus positively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens. Poult Sci 97:930–936. https://doi.org/10.3382/ps/pex396

    Article  CAS  PubMed  Google Scholar 

  34. Reis MP, Fassani EJ, Garcia Junior AAP, Rodrigues PB, Bertechini AG, Barrett N, Persia ME, Schmidt CJ (2017) Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. J Appl Poult Res 26:573–583. https://doi.org/10.3382/japr/pfx032

    Article  CAS  Google Scholar 

  35. Fritts CA, Kersey JH, Motl MA, Kroger EC, Yan F, Si J, Jiang Q, Campos MM, Waldroup AL, Waldroup PW (2000) Bacillus subtilis C-3102 (Calsporin) improves live performance and microbiological status of broiler chickens. J Appl Poult Res 9:149–155. https://doi.org/10.1093/japr/9.2.149

    Article  CAS  Google Scholar 

  36. Chen F, Gao SS, Zhu LQ, Qin SY, Qiu HL (2018) Effects of dietary Lactobacillus rhamnosus CF supplementation on growth, meat quality, and microenvironment in specific pathogen-free chickens. Poult Sci 2018 97:118–123. https://doi.org/10.3382/ps/pex261

    Article  Google Scholar 

  37. Zheng A, Luo J, Meng K, Li J, Bryden WL, Chang W, Zhang S, Wang LXN, Liu G, Yao B (2016) Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genom 17:89. https://doi.org/10.1186/s12864-016-2371-5

    Article  CAS  Google Scholar 

  38. Farhat-Khemakhem A, Blibech M, Boukhris I, Makni M, Chouayekh H (2018) Assessment of the potential of the multi-enzyme producer Bacillus amyloliquefaciens US573 as alternative feed additive. J Sci Food Agric 98:1208–1215. https://doi.org/10.1002/jsfa.8574

    Article  CAS  PubMed  Google Scholar 

  39. Capcarova M, Chmelnicna L, Kolesarova A, Massanyi P, Kovacik J (2010) Effects of Enterococcus faecium M74 strain on selected blood and production parameters of laying hens. Br Poult Sci 51:614–620. https://doi.org/10.1080/00071668.2010.513961

    Article  CAS  PubMed  Google Scholar 

  40. Fan Y, Zhao L, Ji S, Li X, Jia R, Xi L, Zhang J, Ma Q (2015) Protective effects of Bacillus subtilis ANSB060 on serum biochemistry, histopathological changes and antioxidant enzyme activities of broilers fed moldy peanut meal naturally contaminated with aflatoxins. Toxins 7:3330–3343. https://doi.org/10.3390/toxins7083330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lan RX, Lee SI, Kim IH (2017) Effects of Enterococcus faecium SLB 120 on growth performance, blood parameters, relative organ weight, breast muscle meat quality, excreta microbiota shedding, and noxious gas emission in broilers. Poult Sci 96:3246–3253. https://doi.org/10.3382/ps/pex101

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q (2012) Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 135:1914–1919. https://doi.org/10.1016/j.foodchem.2012.06.048

    Article  CAS  PubMed  Google Scholar 

  43. Deepthi BV, Somashekaraiah R, Rao KP, Deepa N, Dharanesha NK, Girish KS, Sreenivasa MY (2017) Lactobacillus plantarum MYS6 ameliorates fumonisin b1-induced hepatorenal damage in broilers. Front Microbiol 8:2317. https://doi.org/10.3389/fmicb.2017.02317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koenen ME, Kramer J, van der Hulst R, Heres L, Jeurissen SH, Boersma WJ (2004) Immunomodulation by probiotic lactobacilli in layer- and meat-type chickens. Br Poult Sci 45:355–366. https://doi.org/10.1080/00071660410001730851

    Article  CAS  PubMed  Google Scholar 

  45. Seifert S, Fritz C, Carlini N, Barth SW, Franz CM, Watzl B (2011) Modulation of innate and adaptive immunity by the probiotic Bifidobacterium longum PCB133 in turkeys. Poult Sci 90:2275–2280. https://doi.org/10.3382/ps.2011-01560

    Article  CAS  PubMed  Google Scholar 

  46. Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH, Park YH (2001) Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol 51:1079–1086. https://doi.org/10.1099/00207713-51-3-1079

    Article  CAS  PubMed  Google Scholar 

  47. Pelzer E, Gomez-Arango LF, Barrett HL, Nitert MD (2017) Review: maternal health and the placental microbiome. Placenta 54:30–37. https://doi.org/10.1016/j.placenta.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  48. Silva FCP, Nicoli JR, Zambonino-Infante JL, Kaushik S, Gatesoupe FJ (2011) Influence of the diet on the microbial diversity of faecal and gastrointestinal contents in gilthead sea bream (Sparus aurata) and intestinal contents in goldfish (Carassius auratus). FEMS Microbiol Ecol 78:285–296. https://doi.org/10.1111/j.1574-6941.2011.01155.x

    Article  CAS  PubMed  Google Scholar 

  49. Koh HW, Kim MS, Lee JS, Kim H, Park JS (2015) Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection. Microbes Environ 30:284–287. https://doi.org/10.1264/jsme2.ME15046

    Article  PubMed  PubMed Central  Google Scholar 

  50. Luong TT, Huong NT, Ha BTV, Huong PTT, Anh NH, Huong DTV, Van QTH, Nghia PT, Anh NTV (2016) Carotenoid producing Bacillus aquimaris found in chicken gastrointestinal tracts. J Biotechnol 14:761–768. https://doi.org/10.15625/1811-4989/14/4/12311

    Article  Google Scholar 

  51. Guan L, Cho KH, Lee JH (2011) Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol 28:101–113. https://doi.org/10.1016/j.fm.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  52. Ahmed LI, Morgan SD, Hafez RS, Abdel-All AAA (2014) Hygienic quality of some fermented milk products. Int J Dairy Sci 9:63–73. https://doi.org/10.3923/ijds.2014.63.73

    Article  CAS  Google Scholar 

  53. Mandal A, Mandal S, Roy S, Patra A, Pradhan S, Das K, Paul T, Mondal KC, Nandi DK (2013) Assessment of efficacy of a potential probiotic strain and its antiuremic and antioxidative activities. e-SPEN J 8:e155–e163. https://doi.org/10.1016/j.clnme.2013.05.001

    Article  Google Scholar 

  54. Priyodip P, Balaji S (2018) Microbial degradation of myo-inositol hexakisphosphate (IP6): specificity, kinetics, and simulation. 3 Biotech 8:268. https://doi.org/10.1007/s13205-018-1302-3

    Article  PubMed  PubMed Central  Google Scholar 

  55. Khambualai O, Yamauchi K, Tangtaweewipat S, Cheva-Isarakul B (2009) Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br Poult Sci 50:592–597. https://doi.org/10.1080/00071660903247182

    Article  CAS  PubMed  Google Scholar 

  56. Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982) Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37:318–326

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179. https://doi.org/10.1016/s0167-7012(00)00122-6

    Article  CAS  PubMed  Google Scholar 

  58. Bauer AW, Perry DM, Kirby WM (1959) Single-disk antibiotic-sensitivity testing of staphylococci; an analysis of technique and results. AMA Arch Intern Med 104:208–216. https://doi.org/10.1001/archinte.1959.00270080034004

    Article  CAS  PubMed  Google Scholar 

  59. Ouwehand AC, Salminen S (2009) In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb Ecol Health Dis 15:175–184. https://doi.org/10.1080/08910600310019886

    Article  Google Scholar 

  60. Cisek AA, Binek M (2014) Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Pol J Vet Sci 17:385–394. https://doi.org/10.2478/pjvs-2014-0057

    Article  CAS  PubMed  Google Scholar 

  61. Olnood CG, Beski SSM, Choct M, Iji PA (2015) Novel probiotics: Their effects on growth performance, gut development, microbial community and activity of broiler chickens. Anim Nutr 1:184–191. https://doi.org/10.1016/j.aninu.2015.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  62. Torshizi MAK, Rahimi SH, Mojgani N, Esmaeilkhanian S, Grimes JL (2008) Screening of indigenous strains of lactic acid bacteria for development of a probiotic for poultry. Asian-Aust J Anim Sci 21:1495–1500. https://doi.org/10.5713/ajas.2008.80081

    Article  CAS  Google Scholar 

  63. Yu J, Liu JR, Chiou MY, Hsu YR, Chiou PWS (2007) The effects of probiotic Lactobacillus reuteri Pg4 strain on intestinal characteristics and performance in broilers. Asian-Aust J Anim Sci 20:1243–1251. https://doi.org/10.5713/ajas.2007.1243

    Article  CAS  Google Scholar 

  64. Ghareeb K, Awad WA, Mohnl M, Porta R, Biarnés M, Böhm J, Schatzmayr G (2012) Evaluating the efficacy of an avian-specific probiotic to reduce the colonization of Campylobacter jejuni in broiler chickens. Poult Sci 91:1825–1832. https://doi.org/10.3382/ps.2012-02168

    Article  CAS  PubMed  Google Scholar 

  65. Hmani H, Daoud L, Jlidi M, Jalleli K, Ben Ali M, Hadj Brahim A, Bargui M, Dammak A, Ben Ali M (2017) A Bacillus subtilis strain as probiotic in poultry: selection based on in vitro functional properties and enzymatic potentialities. J Ind Microbiol Biotechnol 44:1157–1166. https://doi.org/10.1007/s10295-017-1944-x

    Article  CAS  PubMed  Google Scholar 

  66. Salas-Jara MJ, Ilabaca A, Vega M, García A (2016) Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms 4:35. https://doi.org/10.3390/microorganisms4030035

    Article  CAS  PubMed Central  Google Scholar 

  67. Lebeer S, Verhoeven TL, Claes IJ, De Hertogh G, Vermeire S, Buyse J, Van Immerseel F, Vanderleyden J, De Keersmaecker SC (2011) FISH analysis of Lactobacillus biofilms in the gastrointestinal tract of different hosts. Lett Appl Microbiol 52:220–226. https://doi.org/10.1111/j.1472-765X.2010.02994.x

    Article  CAS  PubMed  Google Scholar 

  68. Nallala V, Sadishkumar V, Jeevaratnam K (2017) Molecular characterization of antimicrobial Lactobacillus isolates and evaluation of their probiotic characteristics in vitro for use in poultry. Food Biotechnol 31:20–41. https://doi.org/10.1080/08905436.2016.1269289

    Article  CAS  Google Scholar 

  69. Nguyen AT, Nguyen DV, Tran MT, Nguyen LT, Nguyen AH, Phan TN (2015) Isolation and characterization of Bacillus subtilis CH16 strain from chicken gastrointestinal tracts for use as a feed supplement to promote weight gain in broilers. Lett Appl Microbiol 60:580–588. https://doi.org/10.1111/lam.12411

    Article  CAS  PubMed  Google Scholar 

  70. Jin LZ, Ho YW, Abdullah N, Jalaludin S (1998) Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett Appl Microbiol 27:183–185. https://doi.org/10.1046/j.1472-765X.1998.00405.x

    Article  CAS  PubMed  Google Scholar 

  71. Lee J, Park I, Choi Y, Cho J (2012) Bacillus strains as feed additives: in vitro evaluation of its potential probiotic properties. Rev Colom Cienc Pecu 25:577–585

    CAS  Google Scholar 

  72. McDonald LC, Fleming HP, Hassan HM (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl Environ Microbiol 56:2120–2124

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin WH, Yu B, Jang SH, Tsen HY (2007) Different probiotic properties for Lactobacillus fermentum strains isolated from swine and poultry. Anaerobe 13:107–113. https://doi.org/10.1016/j.anaerobe.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  74. Kashket ER (1987) Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Rev 46:233–244. https://doi.org/10.1016/0378-1097(87)90110-8

    Article  CAS  Google Scholar 

  75. Prieto ML, O’Sullivan L, Tan SP, McLoughlin P, Hughes H, Gutierrez M, Lane JA, Hickey RM, Lawlor PG, Gardiner GE (2014) In vitro assessment of marine Bacillus for use as livestock probiotics. Mar Drugs 12:2422–2445. https://doi.org/10.3390/md12052422

    Article  PubMed  PubMed Central  Google Scholar 

  76. Feng Y, Qiao L, Liu R, Yao H, Gao C (2017) Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. Ann Microbiol 67:239–253. https://doi.org/10.1007/s13213-017-1254-6

    Article  CAS  Google Scholar 

  77. Marteau P, Gerhardt MF, Myara A, Bouvier E, Trivin F, Rambaud JC (1995) Metabolism of bile salts by alimentary bacteria during transit in the human small intestine. Microb Ecol Health Dis 8:151–157. https://doi.org/10.1128/AEM.72.3.1729-1738.2006

    Article  CAS  Google Scholar 

  78. Shokryazdan P, Kalavathy R, Sieo CC, Alitheen NB, Liang JB, Jahromi MF, Ho YW (2014) Isolation and characterization of Lactobacillus strains as potential probiotics for chickens. Pertanika J Trop Agric Sci 37:141–157

    Google Scholar 

  79. Ting YS, Saad YZ, Chin SC, Wan HY (2016) Characterization of conjugated linoleic acid-producing lactic acid bacteria as potential probiotic for chicken. Malays J Microbiol 12:15–23. https://doi.org/10.21161/mjm.67214

    Article  CAS  Google Scholar 

  80. Menconi A, Morgan MJ, Pumford NR, Hargis BM, Tellez G (2013) Physiological properties and Salmonella growth inhibition of probiotic Bacillus strains isolated from environmental and poultry sources. Int J Bacteriol. https://doi.org/10.1155/2013/958408

    Article  PubMed  PubMed Central  Google Scholar 

  81. Burns P, Sánchez B, Vinderola G, Ruas-Madiedo P, Ruiz L, Margolles A, Reinheimer J, de los Reyes-Gavilán CG (2010) Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. Int J Food Microbiol 142:132–141. https://doi.org/10.1016/j.ijfoodmicro.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  82. Ruiz L, Margolles A, Sánchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396. https://doi.org/10.3389/fmicb.2013.00396

    Article  PubMed  PubMed Central  Google Scholar 

  83. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978. https://doi.org/10.1128/AEM.71.2.968-978.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Casula G, Cutting SM (2002) Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol 68:2344–2352. https://doi.org/10.1128/AEM.68.5.2344-2352.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Amiranashvili LL, Gagelidze NA, Varsimashvili KI, Tinikashvili LM, Tolordava LL, Gamkrelidze MD, Amashukeli NV, Makaradze LA (2016) Antimicrobial susceptibility and antibiotic resistance profiles of cultivable lactic acid bacteria from intestinal tract of domestic chickens collected in Adjara. Ann Agrar Sci 14:182–186. https://doi.org/10.1016/j.aasci.2016.08.001

    Article  Google Scholar 

  86. Asghar S, Arif M, Nawaz M, Muhammad K, Ali MA, Ahmad MD, Iqbal S, Anjum AA, Khan M, Nazir J (2016) Selection, characterisation and evaluation of potential probiotic Lactobacillus spp. isolated from poultry droppings. Benef Microbes 7:35–44. https://doi.org/10.3920/BM2015.0020

    Article  CAS  PubMed  Google Scholar 

  87. Wang L, Fang M, Hu Y, Yang Y, Yang M, Chen Y (2014) Characterization of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics for genetic engineering. Acta Biochim Biophys Sin (Shanghai) 46:612–619. https://doi.org/10.1093/abbs/gmu037

    Article  Google Scholar 

  88. Dowarah R, Verma AK, Agarwal N, Singh P, Singh BR (2018) Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 13:e0192978. https://doi.org/10.1371/journal.pone.0192978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Oyewole OF, Maria CO, Tope PS, Funmi OO (2018) In vitro study of potential probiotic lactic acid bacteria isolated from the gut of chickens in Abeokuta, Nigeria. Alexandria J Vet Sci 58:73–84. https://doi.org/10.5455/ajvs.290499

    Article  Google Scholar 

  90. Chaiyawan N, Taveeteptaikul P, Wannissorn B, Ruengsomwong S, Klungsupya P, Buaban W, Itsaranuwat P (2010) Characterization and probiotic properties of Bacillus strains isolated from broiler. Thai J Vet Med 40:207–214

    Google Scholar 

  91. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. https://doi.org/10.1101/cshperspect.a000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 9:E59. https://doi.org/10.3390/ph9030059

    Article  CAS  PubMed  Google Scholar 

  93. Phelan RW, Clarke C, Morrissey JP, Dobson AD, O’Gara F, Barbosa TM (2011) Tetracycline resistance-encoding plasmid from Bacillus sp. strain #24, isolated from the marine sponge Haliclona simulans. Appl Environ Microbiol 77:327–329. https://doi.org/10.1128/AEM.01239-10

    Article  CAS  PubMed  Google Scholar 

  94. Washington DC (2001) Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater area. Appl Environ Microbiol 67:5431–5436. https://doi.org/10.1128/AEM.67.12.5431-5436.2001

    Article  CAS  Google Scholar 

  95. Rajoka MSR, Hayat HF, Sarwar S, Mehwish HM, Ahmad F, Hussain N, Shah SZH, Khurshid M, Siddiqu M, Shi J (2018) Isolation and evaluation of probiotic potential of lactic acid bacteria isolated from poultry intestine. Microbiology 87:116–126. https://doi.org/10.1134/S0026261718010150

    Article  CAS  Google Scholar 

  96. La Ragione RM, Narbad A, Gasson MJ, Woodward MJ (2004) In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett Appl Microbiol 38:197–205. https://doi.org/10.1111/j.1472-765X.2004.01474.x

    Article  PubMed  Google Scholar 

  97. Huang T, Geng H, Miyyapuram VR, Sit CS, Vederas JC, Nakano MM (2009) Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol 191:5690–5696. https://doi.org/10.1128/JB.00541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lagha AB, Haas B, Gottschalk M, Grenier D (2017) Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 48:22. https://doi.org/10.1186/s13567-017-0425-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50:521–542. https://doi.org/10.1590/S1516-89132007000300018

    Article  CAS  Google Scholar 

  100. Abriouel H, Franz CM, Ben Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding received from the Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India (Sanction Order No. BT/IN/Indo-US/Foldscope/39/2015) for carrying out the project. The first author is the junior research fellow and the corresponding author is the principal investigator of the same project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seetharaman Balaji.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Research Involving Human and Animal Participants

This article does not involve human or animal experimentation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyodip, P., Balaji, S. A Preliminary Study on Probiotic Characteristics of Sporosarcina spp. for Poultry Applications. Curr Microbiol 76, 448–461 (2019). https://doi.org/10.1007/s00284-019-01647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01647-2

Navigation