Skip to main content
Log in

Regulation of IAA Biosynthesis in Azospirillum brasilense Under Environmental Stress Conditions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Indole-3-acetic acid (IAA) is one of the most important molecules produced by Azospirillum sp., given that it affects plant growth and development. Azospirillum brasilense strains Sp245 and Az39 (pFAJ64) were pre-incubated in MMAB medium plus 100 mg/mL l-tryptophan and treated with or exposed to the following (a) abiotic and (b) biotic stress effectors: (a) 100 mM NaCl or Na2SO4, 4.0% (w/v) PEG6000, 0.5 mM H2O2, 0.1 mM abscisic acid, 0.1 mM 1-aminocyclopropane 1-carboxylic acid, 45 °C or daylight, and (b) 4.0% (v/v) filtered supernatant of Pseudomonas savastanoi (Ps) or Fusarium oxysporum (Fo), 0.1 mM salicylic acid (SA), 0.1 mM methyl jasmonic acid (MeJA), and 0.01% (w/v) chitosan (CH). After 30 and 120 min of incubation, biomass production, cell viability, IAA concentration (µg/mL), and ipdC gene expression were measured. Our results show that IAA production increases with daylight or in the presence of PEG6000, ABA, SA, CH, and Fo. On the contrary, exposure to 45 °C or treatment with H2O2, NaCl, Na2SO4, ACC, MeJA, and Ps decrease IAA biosynthesis. In this report, growth and IAA biosynthesis in A. brasilense under biotic and abiotic stress conditions are discussed from the point of view of their role in bacterial lifestyle and their potential application as bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  2. Baldani V, Alvarez M, Baldani J, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  3. Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 144:69–75

    Article  PubMed  CAS  Google Scholar 

  4. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  5. Bashan Y, de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  6. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  PubMed  CAS  Google Scholar 

  7. Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90(1):45–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Brandl MT, Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62:4121–4128

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Cesari AB, Paulucci NS, Biasutti MA, Reguera YB, Gallarato LA, Kilmurray C, Dardanelli MS (2016) Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit. J Appl Microbiol 120(1):185–194

    Article  PubMed  CAS  Google Scholar 

  10. Cohen A, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54(2):97–103

    Article  CAS  Google Scholar 

  11. Creus CM, Pereyra MA, Casanovas EM, Sueldo RJ, Barassi CA (2010) Plant growth-promoting effects of rhizobacteria on abiotic stressed plants. Azospirillum-grasses model. AmJPSB 4:49–59

    Google Scholar 

  12. Crozier A, Arruda P, Jasmim JM, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54:2833–2837

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  14. Horemans S, Koninck K, Neuray J, Hermans R, Vlassak K (1986) Production of plant growth substances by Azospirillum sp. and other rhizosphere bacteria. Symbiosis 2:341–346

    CAS  Google Scholar 

  15. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  16. Jensen JB, Egsgaard H, Van Onckelen H, Jochimsen BU (1995) Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 177(20):5762–5766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kolb W, Martin P (1985) Response of plant roots to inoculation with Azospirillum brasilense and to application of indole acetic acid. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 215–221

    Chapter  Google Scholar 

  18. Kloepper J, Lifshitz R, Zablotowicz R (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  19. Madkour MA, Smith LT, Smith GM (1990) Preferential osmolyte accumulation: a mechanism of osmotic stress adaptation in diazotrophic bacteria. Appl Environ Microbiol 56(9):2876–2881

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  21. Molina R, Monzón L, Rivera D, Obando M, Paris G, Cassán F (2014) The effects of light on Azospirillum brasilense Az39. In: Valverde C, Ramirez C, Cassan F (eds) 2do Taller Latinoamericano sobre Rizobacterias Promotoras del Crecimiento de Plantas, pp 77–81

  22. Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7:354–360

    Article  CAS  Google Scholar 

  23. Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:366–370

    Google Scholar 

  24. Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246(1):125–132

    Article  PubMed  CAS  Google Scholar 

  25. Patten C, Glick B (1996) Bacterial biosynthesis of indole 3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  26. Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75(5):1143–1150

    Article  PubMed  CAS  Google Scholar 

  27. Pilet PE, Chollet R (1970) Sur le dosage colorimetrique de l’acide indolylacetique. C R Acad Sci Ser D 271:1675–1678

    CAS  Google Scholar 

  28. Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant Microbe Interact 6:609–609

    Article  CAS  Google Scholar 

  29. Ray PM (1960) The destruction of indoleacetic acid. III. Relationships between peroxidase and indoleacetic acid oxidation. Arch Biochem Biophys 87:19–30

    Article  PubMed  CAS  Google Scholar 

  30. Reed S, Koren V, Smith M, Zhang Z, Moreda F, Seo DJ, DMIP Participants (2004) Overall distributed model intercomparison project results. J Hydrol 298(1–4):27–60

    Article  Google Scholar 

  31. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  32. Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    Article  CAS  Google Scholar 

  33. Strzelczyk E, Kampert M, Li CY (1994) Cytokinin-like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149(1):55–60

    Article  CAS  Google Scholar 

  34. Tien TM, Gaskinsa MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenases in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44(5):363–367

    Article  PubMed  CAS  Google Scholar 

  36. Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Vanstockem M, Michiels K, Vanderleyden J, Van Gool AP (1987) Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiol 53:410–415

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT), and Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina). Fabricio Cassán, Veronica Mora, and Susana Rosas are researchers of CONICET at the UNRC. Romina Molina and Diego Rivera are PhD students at the UNRC with grants from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Cassán.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 KB)

Supplementary material 2 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, R., Rivera, D., Mora, V. et al. Regulation of IAA Biosynthesis in Azospirillum brasilense Under Environmental Stress Conditions. Curr Microbiol 75, 1408–1418 (2018). https://doi.org/10.1007/s00284-018-1537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1537-6

Navigation