Skip to main content
Log in

Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both “salt-in strategy” and “accumulation of compatible solutes strategy” for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used “accumulation of compatible solutes strategy” under saline stress and not the “salt-in strategy”. The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913

    Article  PubMed  CAS  Google Scholar 

  2. Baweja M, Singh PK, Sadaf A, Tiwari R, Nain L, Khare SK, Shukla P (2017) Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Process Biochem 58:199–203

    Article  CAS  Google Scholar 

  3. Baweja M, Singh PK, Shukla P (2016) Enzyme technology, functional proteomics, and systems biology toward unraveling molecular basis for functionality and interactions in biotechnological processes. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology. Springer, Heidelberg

    Google Scholar 

  4. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  PubMed  CAS  Google Scholar 

  5. Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11:1–12

    Article  CAS  Google Scholar 

  6. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:1–30

    Article  CAS  Google Scholar 

  9. Chen G-Q, Jiang X-R (2018) Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 50:94–100

    Article  PubMed  CAS  Google Scholar 

  10. Gomes M, Gonzales-Limache E, Sousa S, Dellagnezze B, Sartoratto A, Silva L, Gieg L, Valoni E, Souza R, Torres A (2016) Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int Biodeterior Biodegrad 126:231–242

    Google Scholar 

  11. Gupta S, Sharma P, Dev K, Sourirajan A (2016) Halophilic bacteria of Lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochem Res Int. https://doi.org/10.1155/2016/9237418

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205

    Article  PubMed  CAS  Google Scholar 

  13. Hanelt I, Muller V (2013) Molecular mechanisms of adaptation of the moderately halophilic bacterium Halobacillis halophilus to its environment. Life (Basel) 3:234–243

    Google Scholar 

  14. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Oren A (2002) Adaptation of halophilic archaea to life at high salt concentrations. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Springer, Netherlands

    Google Scholar 

  16. Shivanand P, Mugeraya G (2011) Halophilic bacteria and their compatible solutes- osmoregulation and potential applications. Curr Sci (Bangalore) 100:1516–1521

    CAS  Google Scholar 

  17. Lai M, Gunsalus RP (1992) Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J Bacteriol 174:7474–7477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Robertson D, Noll D, Roberts M (1992) Free amino acid dynamics in marine methanogens. Beta-amino acids as compatible solutes. J Biol Chem 267:14893–14901

    PubMed  CAS  Google Scholar 

  19. Gupta S, Sharma P, Dev K, Srivastava M, Sourirajan A (2015) A diverse group of halophilic bacteria exist in Lunsu, a natural salt water body of Himachal Pradesh, India. SpringerPlus, 4:274

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu W, Zhao B, Feng D, Yang S (2004) Cloning and characterization of the Halobacillus trueperi betH gene, encoding the transport system for the compatible solute glycine betaine. FEMS Microbiol Lett 235:393–399

    Article  PubMed  CAS  Google Scholar 

  21. Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  23. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  24. Saum SH, Muller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zheng X, Ma H, Yan XW, Zhang LH (2010) Ectoine synthesis and release under osmotic shock in Halomonas venusta DSM4743. Microbiology 37:1090–1096

    Google Scholar 

  26. Wohlfarth A, Severin J, Galinski EA (1990) The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. Microbiology 136:705–712

    CAS  Google Scholar 

  27. Lucena T, Mesa J, Rodriguez-Llorente ID, Pajuelo E, Caviedes M, Ruvira MA, Pujalte MJ (2016) Marinomonas spartinae sp. nov., a novel species with plant-beneficial properties. Int J Syst Evol Microbiol 66:1686–1691

    Article  PubMed  CAS  Google Scholar 

  28. Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof Prem Kumar Khosla, Vice Chancellor, Shoolini University, Solan, Himachal Pradesh, India, for infrastructural support in this study and members of Yeast Biology laboratory for helpful discussion. We also acknowledge Dr. Sonika Gupta, Yeast Biology Laboratory for isolating the halophilic bacterial strains from Lunsu salt water body.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Sourirajan.

Ethics declarations

Conflict of interest

The authors hereby declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, S., Dev, K. & Sourirajan, A. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas. Curr Microbiol 75, 888–895 (2018). https://doi.org/10.1007/s00284-018-1462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1462-8

Navigation