Skip to main content
Log in

The Phosphatome of Medicinal and Edible Fungus Wolfiporia cocos

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Wolfiporia cocos is an important medicinal and edible fungus that grows in association with pine trees, and its dried sclerotium has been used as a traditional medicine in China for centuries. However, the commercial production of W. cocos sclerotia is currently limited by shortages in pine wood resources. Since protein phosphatases (PPs) play significant roles in growth, signal transduction, development, metabolism, sexual reproduction, cell cycle, and environmental stress responses in fungi, the phosphatome of W. cocos was analyzed in this study by identifying PP genes, studying transcript profiles and assigning PPs to orthologous groups. Fifty-four putative PP genes were putatively identified in W. cocos genome based on homologous sequences searching using BLASTx program against the Saccharomyces cerevisiae, Fusarium graminearum, and Sclerotinia sclerotiorum databases. Based on known and presumed functions of orthologues of these PP genes found in other fungi, the putative roles of these W. cocos PPs in colonization, hyphal growth, sclerotial formation, secondary metabolism, and stress tolerance to environment were discussed in this study. And the level of transcripts from PP genes in the mycelium and sclerotium stages was also analyzed by qRT-PCR. Our study firstly identified and functional discussed the phosphatome in the medicinal and edible fungus W. cocos. The data from our study contribute to a better understanding of PPs potential roles in various cellar processes of W. cocos, and systematically provide comprehensive and novel insights into W. cocos economically important traits that could be extended to other fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amon A (2008) A decade of Cdc14–a personal perspective delivered on 9 July 2007 at the 32nd FEBS congress in Vienna, Austria. FEBS J 275:5774–5784. doi:10.1111/j.1742-4658.2008.06693.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cohen P (2000) The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem Sci 25:596–601. doi:10.1016/S0968-0004(00)01712-6

    Article  CAS  PubMed  Google Scholar 

  3. Dai YC, Yang ZL, Cui BK, Yu CJ, Zhou LW (2009) Species diversity and utilization of medicinal mushrooms and fungi in China. Int J Med Mushrooms 11:287–302. doi:10.1615/IntJMedMushr.v11.i3.80

    Article  Google Scholar 

  4. Doi K, Gartner A, Ammerer G, Errede B, Shinkawa H, Sugimoto K, Matsumoto K (1994) MSG5, a novel protein phosphatase promotes adaptation to pheromone response in Saccharomyces cerevisiae. EMBO J 13:61–70

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Du Y, Shi Y, Yang J, Chen X, Xue M, Zhou W, Peng YL (2013) A serine/threonine-protein phosphatase PP2A catalytic subunit is essential for asexual development and plant infection in Magnaporthe oryzae. Curr Genet 59:33–41. doi:10.1007/s00294-012-0385-3

    Article  CAS  PubMed  Google Scholar 

  6. Dubots E, Cottier S, Peli-Gulli MP, Jaquenoud M, Bontron S, Schneiter R, De Virgilio C (2014) TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex. PLoS ONE 9:e104194. doi:10.1371/journal.pone.0104194

    Article  PubMed  PubMed Central  Google Scholar 

  7. Erental A, Harel A, Yarden O (2007) Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol Plant Microbe Interact 20:944–954. doi:10.1094/MPMI-20-8-0944

    Article  CAS  PubMed  Google Scholar 

  8. Esteban CI (2009) Medicinal interest of Poria cocos (=Wolfiporia extensa). Rev Iberoam Micol 26:103–107. doi:10.1016/S1130-1406(09)70019-1

    Article  PubMed  Google Scholar 

  9. Feng YL, Lei P, Tian T, Yin L, Chen DQ, Chen H, Mei Q, Zhao YY, Lin RC (2013) Diuretic activity of some fractions of the epidermis of Poria cocos. J Ethnopharmacol 150:1114–1118. doi:10.1016/j.jep.2013.10.043

    Article  PubMed  Google Scholar 

  10. Gao Y, Yan H, Jin R, Lei P (2016) Antiepileptic activity of total triterpenes isolated from Poria cocos is mediated by suppression of aspartic and glutamic acids in the brain. Pharm Biol 9:1–8. doi:10.3109/13880209.2016.1168853

    Google Scholar 

  11. Gaskell J, Blanchette RA, Stewart PE, BonDurant SS, Adams M, Sabat G, Kersten P, Cullen D (2016) Transcriptome and secretome analyses of the wood decay fungus Wolfiporia cocos support alternative mechanisms of lignocellulose conversion. Appl Environ Microbiol 82:3979–3987. doi:10.1128/AEM.00639-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giesbert S, Schumacher J, Kupas V, Espino J, Segmüller N, Haeuser-Hahn I, Schreier P, Tudzynski P (2012) Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence. Mol Plant Microbe Interact 25:481–495. doi:10.1094/MPMI-07-11-0199

    Article  CAS  PubMed  Google Scholar 

  13. Harel A, Bercovich S, Yarden O (2006) Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Mol Plant Microbe Interact 19:682–693. doi:10.1094/MPMI-19-0682

    Article  CAS  PubMed  Google Scholar 

  14. Jiang J, Yun Y, Yang Q, Shim W-B, Wang Z, Ma Z (2011) A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. PLoS ONE 6:e25311. doi:10.1371/journal.pone.0025311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S (2010) A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. P Natl Acad Sci USA 107:17539–17544. doi:10.1073/pnas.1007974107

    Article  CAS  Google Scholar 

  16. Kobira S, Atsumi T, Kakiuchi N, Mikage M (2012) Difference in cultivation characteristics and genetic polymorphism between Chinese and Japanese strains of Wolfiporia cocos Ryvarden et Gilbertson (Poria cocos Wolf). J Nat Med 66:493–499. doi:10.1007/s11418-011-0612-0

    Article  CAS  PubMed  Google Scholar 

  17. Kubo T, Terabayashi S, Takeda S, Sasaki H, Aburada M, Miyamoto K (2006) Indoor cultivation and cultural characteristics of Wolfiporia cocos sclerotia using mushroom culture bottles. Biol Pharm Bull 29:1191–1196. doi:10.1248/bpb.29.1191

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Yoshizumi T, Hongo H, Yoneda A, Hara H, Hamasaki H, Takahashi N, Nagata N, Shimada H, Matsui M (2012) Arabidopsis mitochondrial protein TIM50 affects hypocotyl cell elongation through intracellular ATP level. Plant Sci 183:212–217. doi:10.1016/j.plantsci.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  19. Lee CM, Nantel A, Jiang L, Whiteway M, Shen SH (2004) The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans. Mol Microbiol 51:691–709. doi:10.1111/j.1365-2958.2003.03879.x

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Shi L, Chen D, Ren A, Gao T, Zhao M (2015) Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genet Biol 82:168–180. doi:10.1016/j.fgb.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  21. Lin ZH, Xiao ZB, Zhu DN, Yan YQ, Yu BY, Wang QJ (2009) Aqueous extracts of FBD, a Chinese herb formula composed of Poria cocos, Atractylodes macrocephala, and Angelica sinensis reverse scopolamine induced memory deficit in ICR mice. Pharm Biol 47:396–401. doi:10.1080/13880200902758816

    Article  Google Scholar 

  22. Miermont A, Uhlendorf J, McClean M, Hersen P (2011) The dynamical systems properties of the HOG signaling cascade. J Signal Transduct 2011:930940. doi:10.1155/2011/930940

    PubMed  PubMed Central  Google Scholar 

  23. Miranda MN, Masuda CA, Ferreira-Pereira A, Carvajal E, Ghislain M, Montero-Lomelí M (2010) The serine/threonine protein phosphatase Sit4p activates multidrug resistance in Saccharomyces cerevisiae. FEMS Yeast Res 10:674–686. doi:10.1111/j.1567-1364.2010.00656.x

    Article  CAS  PubMed  Google Scholar 

  24. Ren A, Liu R, Miao ZG, Zhang X, Cao PF, Chen TX, Li CY, Shi L, Jiang AL, Zhao MW (2017) Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol 19:566–583. doi:10.1111/1462-2920.13498

    Article  CAS  PubMed  Google Scholar 

  25. Rios JL (2011) Chemical constituents and pharmacological properties of Poria cocos. Planta Med 77:681–691. doi:10.1055/s-0030-1270823

    Article  CAS  PubMed  Google Scholar 

  26. Sacco F, Perfetto L, Castagnoli L, Cesareni G (2012) The human phosphatase interactome: an intricate family portrait. FEBS Lett 586:2732–2739. doi:10.1016/j.febslet.2012.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakumoto N, Yamashita H, Mukai Y, Kaneko Y, Harashima S (2001) Dual-specificity protein phosphatase Yvh1p, which is required for vegetative growth and sporulation, interacts with yeast pescadillo homolog in Saccharomyces cerevisiae. Biochem Bioph Res C 289:608–615. doi:10.1006/bbrc.2001.6021

    Article  CAS  Google Scholar 

  28. Seshacharyulu P, Pandey P, Datta K, Batra SK (2013) Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335:9–18. doi:10.1016/j.canlet.2013.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484. doi:10.1016/j.cell.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  30. Shu S, Chen B, Zhou M, Zhao X, Xia H, Wang M (2013) De Novo sequencing and transcriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids. PLoS ONE 8:e71350. doi:10.1371/journal.pone.0071350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Son S, Osmani SA (2009) Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1. Eukaryot Cell 8:573–585. doi:10.1128/EC.00346-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun Q, Wei W, Zhao J, Song J, Peng F, Zhang S, Zheng Y, Chen P, Zhu W (2015) An efficient PEG/CaCl2-mediated transformation approach for the medicinal fungus Wolfiporia cocos. J Microbiol Biotechn 25:1528–1531. doi:10.4014/jmb.1501.01053

    Article  CAS  Google Scholar 

  33. Tang J, Nie J, Li D, Zhu W, Zhang S, Ma F, Sun Q, Song J, Zheng Y, Chen P (2014) Characterization and antioxidant activities of degraded polysaccharides from Poria cocos sclerotium. Carbohyd Polym 105:121–126. doi:10.1016/j.carbpol.2014.01.049

    Article  CAS  Google Scholar 

  34. Wang KQ, Yin XR, Huang H, Fu J, Feng HG, Wang Q, Sun G (2012) Production status and industrialization development countermeasures of Poria in Hubei Province. Modern Chinese Medicine 14:24–27

    CAS  Google Scholar 

  35. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. doi:10.1093/bioinformatics/btp612

    Article  PubMed  Google Scholar 

  36. Wang Y, Jiao TL, Liu XH, Lin FC, Wu WR (2011) Functional characterization of a NEM1-like gene in Magnaporthe oryzae. Agr Sci China 10:1385–1390

    Article  CAS  Google Scholar 

  37. Wang YZ, Zhang J, Zhao YL, Li T, Shen T, Li JQ, Li WY, Liu HG (2013) Mycology, cultivation, traditional uses, phytochemistry and pharmacology of Wolfiporia cocos (Schwein.) Ryvarden et Gilb.: a review. J Ethnopharmacol 147:265–276. doi:10.1016/j.jep.2013.03.027

    Article  CAS  PubMed  Google Scholar 

  38. Wei W, Shu S, Zhu W, Xiong Y, Peng F (2016) The kinome of edible and medicinal fungus Wolfiporia cocos. Front Microbiol 7:1495. doi:10.3389/fmicb.2016.01495

    PubMed  PubMed Central  Google Scholar 

  39. Wu Y, Zhu W, Wei W, Zhao X, Wang Q, Zeng W, Zheng Y, Chen P, Zhang S (2016) De novo assembly and transcriptome analysis of sclerotial development in Wolfiporia cocos. Gene 588:149–155. doi:10.1016/j.gene.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  40. Xu JW, Xu YN, Zhong JJ (2012) Enhancement of ganoderic acid accumulation by overexpression of an N-terminally truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase gene in the basidiomycete Ganoderma lucidum. Appl Environ Microbiol 78:7968–7976. doi:10.1128/AEM.01263-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Q, Jiang J, Mayr C, Hahn M, Ma Z (2013) Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea. Environ Microbiol 15:2696–2711. doi:10.1111/1462-2920.12126

    CAS  PubMed  Google Scholar 

  42. Yu F, Gu Q, Yun Y, Yin Y, Xu JR, Shim WB, Ma Z (2014) The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol 203:219–232. doi:10.1111/nph.12776

    Article  CAS  PubMed  Google Scholar 

  43. Yun Y, Liu Z, Yin Y, Jiang J, Chen Y, Xu JR, Ma Z (2015) Functional analysis of the Fusarium graminearum phosphatome. New Phytol 207:119–134. doi:10.1111/nph.13374

    Article  CAS  PubMed  Google Scholar 

  44. Zhang S, Hu B, Wei W, Xiong Y, Zhu W, Peng F, Yu Y, Zheng Y, Chen P (2016) De novo analysis of Wolfiporia cocos transcriptome to reveal the differentially expressed carbohydrate-active enzymes (CAZymes) genes during the early stage of sclerotial growth. Front Microbiol 7:83. doi:10.3389/fmicb.2016.00083

    PubMed  PubMed Central  Google Scholar 

  45. Zhao YY, Feng YL, Bai X, Tan XJ, Lin RC, Mei Q (2013) Ultra performance liquid chromatography-based metabonomic study of therapeutic effect of the surface layer of Poria cocos on adenine-induced chronic kidney disease provides new insight into anti-fibrosis mechanism. PLoS ONE 8:e59617. doi:10.1371/journal.pone.0059617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zolnierowicz S, Bollen M (2000) Protein phosphorylation and protein phosphatases De Panne, Belgium, September 19–24, 1999. EMBO J 19:483–488. doi:10.1093/emboj/19.4.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their constructive and helpful comments. This research was supported by Scientific Research Foundation Granted From Wuhan Polytechnic University (2017y12).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: WZ and WW. Performed the experiments: WZ and WW. Analyzed the experiment data: WZ, WW, and SZ. Contributed reagents/materials/analysis tools: WZ, WW, SZ, YZ, and PC. Wrote the paper: WZ and WW. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenjun Zhu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Wei, W., Zhang, S. et al. The Phosphatome of Medicinal and Edible Fungus Wolfiporia cocos . Curr Microbiol 75, 124–131 (2018). https://doi.org/10.1007/s00284-017-1356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1356-1

Navigation