Skip to main content

Advertisement

Log in

Development of a Rapid Identification Method for the Differentiation of Enterococcus Species Using a Species-Specific Multiplex PCR Based on Comparative Genomics

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Enterococci are lactic acid bacteria that are commonly found in food and in animal gut. Since 16 S ribosomal RNA (rRNA) sequences, genetic markers for bacterial identification, are similar among several Enterococcus species, it is very difficult to determine the correct species based on only 16 S rRNA sequences. Therefore, we developed a rapid method for the identification of different Enterococcus species using comparative genomics. We compared 38 genomes of 13 Enterococcus species retrieved from the National Center of Biotechnology Information database and identified 25,623 orthologs. Among the orthologs, four genes were specific to four Enterococcus species (Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, and Enterococcus durans). We designed species-specific primer sets targeting the genes and developed a multiplex PCR using primer sets that could distinguish the four Enterococcus species among the nine strains of Enterococcus species that were available locally. The multiplex PCR method also distinguished the four species isolated from various environments, such as feces of chicken and cow, meat of chicken, cow, and pigs, and fermented soybeans (Cheonggukjang and Doenjang). These results indicated that our novel multiplex PCR using species-specific primers could identify the four Enterococcus species in a rapid and easy way. This method will be useful to distinguish Enterococcus species in food, feed, and clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Araújo TF, Ferreira CLDL (2013) The genus Enterococcus as probiotic: safety concerns. Braz Arch Biol Technol 56(3):457–466

    Article  Google Scholar 

  2. Authority E (2012) Guidance on the safety assessment of Enterococcus faecium in animal nutrition. EFSA J 10(5):10

    Google Scholar 

  3. Azhahianambi P, Ghosh S, Kumar CA, Suryanarayana V (2008) Cost effectiveness of colony lysis and colony PCR methods for screening of recombinant Escherichia coli colonies–a comparative study. Indian J Exp Biol 46(10):731

    CAS  PubMed  Google Scholar 

  4. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9(1):1

    Article  Google Scholar 

  5. Bailey J, Thomson J, Cox N (1987) Contamination of poultry during processing. Academic Press, Orlando, FL

    Book  Google Scholar 

  6. Bowler PG, Duerden BI, Armstrong DG (2001 Apr) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14(2):244–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004 Jan) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70(1):293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE, Multiplex PCR (2000) optimization and application in diagnostic virology. Clin Microbiol Rev 13(4):559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fox GE, Wisotzkey JD, Jurtshuk JR P (1992) How close is close: 16 S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Evol Microbiol 42(1):166–170

    CAS  Google Scholar 

  10. Frolkova P, Ghosh A, Svec P, Zurek L, Literak I (2012) Use of the manganese-dependent superoxide dismutase gene sodA for rapid identification of recently described enterococcal species. Folia Microbiol (Praha) 57:1–4

    Article  Google Scholar 

  11. Hammerum A (2012) Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 18(7):619–625

    Article  CAS  PubMed  Google Scholar 

  12. Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3(5):421–569

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jackson CR, Fedorka-Cray PJ, Barrett JB (2004) Use of a genus-and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42(8):3558–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanagawa K, Oishi M, Negoro S, Urabe I, Okada H (1993) Characterization of the 6-aminohexanoate-dimer hydrolase from Pseudomonas sp. NK87. Microbiology 139(4):787–795

    CAS  Google Scholar 

  15. Ke D, Picard FJ, Martineau F, Menard C, Roy PH, Ouellette M et al (1999) Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37(11):3497–3503

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kristich CJ, Rice LB Arias CA (2014) Enterococcal infection—Treatment and antibiotic resistance

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol

  18. McIver KS, Myles RL (2002) Two DNA-binding domains of Mga are required for virulence gene activation in the group A streptococcus. Mol Microbiol 43(6):1591–1601

    Article  CAS  PubMed  Google Scholar 

  19. Naser S, Thompson FL, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I et al (2005) Phylogeny and identification of Enterococci by atpA gene sequence analysis. J Clin Microbiol 43(5):2224–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nayak BS, Badgley B, Harwood VJ (2011) Comparison of genotypic and phylogenetic relationships of environmental Enterococcus isolates by BOX-PCR typing and 16 S rRNA gene sequencing. Appl Environ Microbiol 77(14):5050–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neely AN, Maley MP (2000 Feb) Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol 38(2):724–726

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T et al (2014 Jan) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucl Acids Res 42(Database issue):D206–D214

    Article  CAS  PubMed  Google Scholar 

  23. Ozawa Y, Courvalin P, Galimand M (2000) Identification of enterococci at the species level by sequencing of the genes for D-alanine: D-alanine ligases. Syst Appl Microbiol 23(2):230–237

    Article  CAS  PubMed  Google Scholar 

  24. Peykov SZ, Aleksandrova VD, Dimov SG (2012) Rapid identification of Enterococcus faecalis by species-specific primers based on the genes involved in the Entner–Doudoroff pathway. Mol Biol Rep 39(6):7025–7030

    Article  CAS  PubMed  Google Scholar 

  25. Poyart C, Quesnes G, Trieu-Cuot P (2000) Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci. J Clin Microbiol 38(1):415–418

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C et al (2003) A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin. J Infect Dis 187(3):508–512

    Article  CAS  PubMed  Google Scholar 

  27. Rizk G, Lavenier D. GASSST: global alignment short sequence search tool. Bioinformatics. 2010 Oct 15;26(20):2534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schleifer KH, Kilpper-Bälz R (1984) Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol 34(1):31–34

    Google Scholar 

  29. Song Y, Kato N, Liu C, Matsumiya Y, Kato H, Watanabe K (2000) Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group-and species-specific primers derived from the 16S–23 S rRNA intergenic spacer region and its flanking 23 S rRNA. FEMS Microbiol Lett 187(2):167–173

    CAS  PubMed  Google Scholar 

  30. Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16 S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44(4):846–849

    Article  CAS  Google Scholar 

  31. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M et al (2001 Oct) The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67(10):4538–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsuchiya K, Fukuyama S, Kanzaki N, Kanagawa K, Negoro S, Okada H (1989 Jun) High homology between 6-aminohexanoate-cyclic-dimer hydrolases of Flavobacterium and Pseudomonas strains. J Bacteriol 171(6):3187–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucl Acids Res. 35:W71–4

    Article  Google Scholar 

  34. Van Tyne D, Gilmore MS (2014) Friend turned foe: Evolution of enterococcal virulence and antibiotic resistance. Annu Rev Microbiol 68:337

    Article  PubMed  PubMed Central  Google Scholar 

  35. Werner G, Coque TM, Franz CM, Grohmann E, Hegstad K, Jensen L et al (2013) Antibiotic resistant enterococci—tales of a drug resistance gene trafficker. Int J Med Microbiol 303(6):360–379

    Article  CAS  PubMed  Google Scholar 

  36. Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W (2011) IS element IS 16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect Dis 11(1):1

    Article  Google Scholar 

  37. Wilson DM, Ajl S (1957) Metabolism of L-rhamnose by Escherichia coli. II. The phosphorylation of L-rhamnulose. J Bacteriol 73(3):415–420

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13(1):1

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Strategic Initiative for Microbiomes in Agriculture and Food, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea as part of the multi-ministerial Genome Technology to Business Translation Program (Grant ID: 914005–04) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1C1B2016246). We appreciate KACC (Korean Agricultural Culture Collection) for donation of E. durans, E. hirae, E. mundtii, E. avium, E. gallinarum, E. silesiacus, E. termitis strains for this study. Jongbin Park was supported by the CK-II Program from NRF (CALSIS, Center for Aniaml Life Senary Industry Specialization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Bae Kim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 574 KB)

Supplementary material 2 (XLS 127 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Jin, GD., Pak, J.I. et al. Development of a Rapid Identification Method for the Differentiation of Enterococcus Species Using a Species-Specific Multiplex PCR Based on Comparative Genomics. Curr Microbiol 74, 476–483 (2017). https://doi.org/10.1007/s00284-017-1210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1210-5

Keywords

Navigation