Skip to main content
Log in

The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aydin F, Atabay HI, Akan M (2001) The isolation and characterization of Campylobacter jejuni subsp. jejuni from domestic geese (Anser anser). J Appl Microbiol 90(4):637–642. doi:10.1046/j.1365-2672.2001.01293.x

    Article  CAS  PubMed  Google Scholar 

  2. Baylis CL, MacPhee S, Martin KW, Humphrey TJ, Betts RP (2000) Comparison of three enrichment media for the isolation of Campylobacter spp. from foods. J Appl Microbiol 89(5):884–891. doi:10.1046/j.1365-2672.2000.01203.x

    Article  CAS  PubMed  Google Scholar 

  3. Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JTM, Marsh PD, Keevil CW, Leach SA (1998) Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl Environ Microbiol 64(2):733–741

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226(5):1065–1073

    Article  CAS  Google Scholar 

  5. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322. doi:10.1126/science.284.5418.1318

    Article  CAS  PubMed  Google Scholar 

  6. Duffy L, Dykes GA (2006) Growth temperature of four Campylobacter jejuni strains influences their subsequent survival in food and water. Lett Appl Microbiol 43(6):596–601. doi:10.1111/j.1472-765X.2006.02019.x

    Article  CAS  PubMed  Google Scholar 

  7. Dykes G, Sampathkumar B, Korber D (2003) Planktonic or biofilm growth affects survival, hydrophobicity and protein expression patterns of a pathogenic Campylobacter jejuni strain. Int J Food Microbiol 89(1):1–10

    Article  CAS  PubMed  Google Scholar 

  8. Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP, Burrows LL (2005) Common β-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58(4):1012–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ge B, White DG, McDermott PF, Girard W, Zhao S, Hubert S, Meng J (2003) Antimicrobial-resistant Campylobacter species from retail raw meats. Appl Environ Microbiol 69(5):3005–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goulter RM, Gentle IR, Dykes GA (2010) Characterisation of curli production, cell surface hydrophobicity, autoaggregation and attachment behaviour of Escherichia coli O157. Curr Microbiol 61(3):157–162

    Article  CAS  PubMed  Google Scholar 

  11. Gunther NWI, Chen CY (2009) The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol 26(1):44–51. doi:10.1016/j.fm.2008.07.012

    Article  CAS  PubMed  Google Scholar 

  12. Hanning I, Jarquin R, Slavik M (2008) Campylobacter jejuni as a secondary colonizer of poultry biofilms. J Appl Microbiol 105(4):1199–1208. doi:10.1111/j.1365-2672.2008.03853.x

    Article  CAS  PubMed  Google Scholar 

  13. Jacobs-Reitsma W, Lyhs U, Wagenaar J, Nachamkin I, Szymanski C, Blaser M (2008) Campylobacter in the food supply. Campylobacter (Ed. 3):627–644

  14. Joshua GWP, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152(2):387–396. doi:10.1099/mic.0.28358-0

    Article  CAS  PubMed  Google Scholar 

  15. Kalmokoff M, Lanthier P, Tremblay T-L, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188(12):4312–4320. doi:10.1128/jb.01975-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keener K, Bashor M, Curtis P, Sheldon B, Kathariou S (2004) Comprehensive review of Campylobacter and poultry processing. Compr Rev Food Sci Food Saf 3(2):105–116

    Article  Google Scholar 

  17. Kumar CG, Anand S (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1):9–27

    Article  CAS  PubMed  Google Scholar 

  18. Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q (2009) Antibiotic resistance in Campylobacter: emergence, transmission and persistence

  19. Martínez-Rodriguez A, Kelly AF, Park SF, Mackey BM (2004) Emergence of variants with altered survival properties in stationary phase cultures of Campylobacter jejuni. Int J Food Microbiol 90(3):321–329

    Article  PubMed  Google Scholar 

  20. May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 53(11):4628–4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moser I, Schröder W (1997) Hydrophobic characterization of thermophilic Campylobacter species and adhesion to INT 407 cell membranes and fibronectin. Microb Pathog 22(3):155–164. doi:10.1006/mpat.1996.0104

    Article  CAS  PubMed  Google Scholar 

  22. Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, Dahbi G, Blanco M, del Carmen Ponte M, Soriano F (2008) Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Microb Pathog 45(2):86–91

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen VT, Turner MS, Dykes GA (2010) Effect of temperature and contact time on Campylobacter jejuni attachment to, and probability of detachment from, stainless steel. J Food Prot 73(5):832–838

    PubMed  Google Scholar 

  24. Nguyen VT, Turner MS, Dykes GA (2011) Influence of cell surface hydrophobicity on attachment of Campylobacter to abiotic surfaces. Food Microbiol 28(5):942–950

    Article  CAS  PubMed  Google Scholar 

  25. Nucleo E, Fugazza G, Migliavacca R, Spalla M, Comelli M, Pagani L, Debiaggi M (2010) Differences in biofilm formation and aggregative adherence between β-lactam susceptible and β-lactamases producing P. mirabilis clinical isolates. New Microbiol 33(1):37

    PubMed  Google Scholar 

  26. Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73(6):1908–1913. doi:10.1128/aem.00740-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reuter M, Mallett A, Pearson BM, van Vliet AHM (2010) Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 76(7):2122–2128. doi:10.1128/aem.01878-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosenberg M (1981) Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42(2):375–377

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Salloway S, Mermel LA, Seamans M, Aspinall GO, Nam Shin JE, Kurjanczyk LA, Penner JL (1996) Miller-Fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect Immun 64(8):2945–2949

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanders SQ, Boothe DH, Frank JF, Arnold JW (2007) Culture and detection of Campylobacter jejuni within mixed microbial populations of biofilms on stainless steel. J Food Prot 70(6):1379–1385

    PubMed  Google Scholar 

  31. Skirrow MB (1994) Diseases due to Campylobacter, Helicobacter and related bacteria. J Comp Pathol 111(2):113–149

    Article  CAS  PubMed  Google Scholar 

  32. Skyberg J, Siek K, Doetkott C, Nolan L (2007) Biofilm formation by avian Escherichia coli in relation to media, source and phylogeny. J Appl Microbiol 102(2):548–554

    Article  CAS  PubMed  Google Scholar 

  33. Solomon EB, Hoover DG (1999) Campylobacter jejuni: a bacterial paradox. J Food Saf 19(2):121–136. doi:10.1111/j.1745-4565.1999.tb00239.x

    Article  Google Scholar 

  34. Sommer P, Martin-Rouas C, Mettler E (1999) Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol 16(5):503–515

    Article  CAS  Google Scholar 

  35. Teh AHT, Lee SM, Dykes GA (2014) Does Campylobacter jejuni form biofilms in food-related environments? Appl Environ Microbiol 80(17):5154–5160

    Article  PubMed  PubMed Central  Google Scholar 

  36. Teh AHT, Lee SM, Dykes GA (2016) Draft genome sequences of three multiantibiotic-resistant Campylobacter jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia. Genome Announc. doi:10.1128/genomeA.00331-16

    PubMed  PubMed Central  Google Scholar 

  37. Teh AHT, Wang Y, Dykes GA (2014) The influence of antibiotic resistance gene carriage on biofilm formation by two Escherichia coli strains associated with urinary tract infections. Can J Microbiol 60(2):105–111

    Article  CAS  PubMed  Google Scholar 

  38. Turonova H, Briandet R, Rodrigues R, Hernould M, Hayek N, Stintzi A, Pazlarova J, Tresse O (2015) Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions. Frontiers in Microbiol 6

  39. Wieczorek K, Dykes GA, Osek J, Duffy LL (2013) Antimicrobial resistance and genetic characterization of Campylobacter spp. from three countries. Food Control 34(1):84–91

    Article  CAS  Google Scholar 

  40. Young VB, Mansfield L (2005) Campylobacter infection-clinical context. Campylobacter: molecular and cellular biology horizon bioscience, Wymondham, Norfolk, UK:1–12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Dykes.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teh, A.H.T., Lee, S.M. & Dykes, G.A. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni . Curr Microbiol 73, 859–866 (2016). https://doi.org/10.1007/s00284-016-1134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1134-5

Keywords

Navigation