Skip to main content
Log in

The SARP Family Regulator Txn9 and Two-Component Response Regulator Txn11 are Key Activators for Trioxacarcin Biosynthesis in Streptomyces bottropensis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Trioxacarcin A is a polyoxygenated, structurally complex antibiotic produced by Streptomyces spp., which possesses high anti-bacterial, anti-malaria, and anti-tumor activities. The trioxacarcin biosynthetic pathway involves type II polyketide synthases (PKSs) with l-isoleucine as a unique starter unit, as well as many complex post-PKS tailoring enzymes and resistance and regulatory proteins. In this work, two regulatory genes, txn9 coding for a Streptomyces antibiotic regulatory protein family regulator and txn11 for a two-component response regulator, were revealed to be absolutely required for trioxacarcin production by individually inactivating all the six annotated regulatory genes in the txn cluster. Complementation assay suggested that these two activators do not have a regulatory cascade relationship. Moreover, transcriptional analysis showed that they activate 15 of the 28 txn operons, indicating that a complicated regulatory network is involved in the trioxacarcin production. Information gained from this study may be useful for improving the production of the highly potent trioxacarcin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arias P, Fernández-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215–226

    Article  CAS  PubMed  Google Scholar 

  3. Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chen Y, Wendt-Pienkowski E, Shen B (2008) Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190:5587–5596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Clark KL, Halay ED, Lai E et al (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420

    Article  CAS  PubMed  Google Scholar 

  6. Elgrably-Weiss M, Schlosser-Silverman E, Rosenshine I et al (2006) DeoT, a DeoR-type transcriptional regulator of multiple target genes. FEMS Microbiol Lett 254:141–148

    Article  CAS  PubMed  Google Scholar 

  7. Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fitzner A, Frauendorf H, Laatsch H et al (2008) Formation of gutingimycin: analytical investigation of trioxacarcin A-mediated alkylation of dsDNA. Anal Bioanal Chem 390:1139–1147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fogh RH, Ottleben G, Rüterjans H et al (1994) Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy. EMBO J 13:3936–3944

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10:110–116

    Article  CAS  PubMed  Google Scholar 

  11. Gajiwala KS, Chen H, Cornille F et al (2000) Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403:916–921

    Article  CAS  PubMed  Google Scholar 

  12. Gust B, Challis GL, Fowler K et al (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hansen MR, Hurley LH (1996) Pluramycins. Old drugs having modern friends in structural biology. Acc Chem Res 29:249–258

    Article  CAS  Google Scholar 

  14. Kieser T, Bibb MJ, Buttner MJ et al (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  15. Laub MT, Goulian M (2007) Specificity in two-component signal transduction pathways. Annu Rev Genet 41:121–145

    Article  CAS  PubMed  Google Scholar 

  16. Liu G, Chater KF, Chandra G et al (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Magauer T, Smaltz DJ, Myers AG (2013) Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues. Nat Chem 5:886–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucl Acids Res 39:D225–D229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Martín JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263–273

    Article  PubMed  Google Scholar 

  20. Maskey RP, Helmke E, Kayser O et al (2004) Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J Antibiot (Tokyo) 57:771–779

    Article  CAS  Google Scholar 

  21. Maskey RP, Sevvana M, Usón I et al (2004) Gutingimycin: a highly complex metabolite from a marine streptomycete. Angew Chem Int Ed Engl 43:1281–1283

    Article  CAS  PubMed  Google Scholar 

  22. McKenzie NL, Nodwell JR (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189:5284–5292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nicolaou KC, Cai Q, Qin B et al (2015) Total synthesis of trioxacarcin DC-45-A2. Angew Chem Int Ed Engl 54:3074–3078

    Article  CAS  PubMed  Google Scholar 

  24. Pfoh R, Laatsch H, Sheldrick GM (2008) Crystal structure of trioxacarcin A covalently bound to DNA. Nucl Acids Res 36:3508–3514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rezácová P, Kozísek M, Moy SF et al (2008) Crystal structures of the effector-binding domain of repressor central glycolytic gene regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates. Mol Microbiol 69:895–910

    Article  PubMed Central  PubMed  Google Scholar 

  26. Sheldon PJ, Busarow SB, Hutchinson CR (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460

    Article  CAS  PubMed  Google Scholar 

  27. Shu D, Chen L, Wang W et al (2009) afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol 81:1149–1160

    Article  CAS  PubMed  Google Scholar 

  28. Švenda J, Hill N, Myers AG (2011) A multiply convergent platform for the synthesis of trioxacarcins. Proc Natl Acad Sci USA 108:6709–6714

    Article  PubMed Central  PubMed  Google Scholar 

  29. Tamaoki T, Shirahata K, Iida T et al (1981) Trioxacarcins, novel antitumor antibiotics. II. Isolation, physico-chemical properties and mode of action. J Antibiot (Tokyo) 34:1525–1530

    Article  CAS  Google Scholar 

  30. Tomita F, Tamaoki T, Morimoto M et al (1981) Trioxacarcins, novel antitumor antibiotics. I. Producing organism, fermentation and biological activities. J Antibiot (Tokyo) 34:1519–1524

    Article  CAS  Google Scholar 

  31. White J, Bibb M (1997) bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol 179:627–633

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184

    Article  CAS  PubMed  Google Scholar 

  33. Yu Z, Zhu H, Dang F et al (2012) Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol 85:535–556

    Article  CAS  PubMed  Google Scholar 

  34. Zhang M, Hou XF, Qi LH et al (2015) Biosynthesis of trioxacarcin revealing a different starter unit and complex tailoring steps for type II polyketide synthase. Chem Sci 6:3440–3447

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Weihong Jiang (Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences) for kindly providing us the pSET1521 plasmid. This work was financially supported by grants from the National Natural Science Foundation of P. R. China (81202442).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Hua Yuan.

Additional information

Kui Yang and Li-Hua Qi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Qi, LH., Zhang, M. et al. The SARP Family Regulator Txn9 and Two-Component Response Regulator Txn11 are Key Activators for Trioxacarcin Biosynthesis in Streptomyces bottropensis . Curr Microbiol 71, 458–464 (2015). https://doi.org/10.1007/s00284-015-0868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0868-9

Keywords

Navigation