Skip to main content
Log in

Significantly Diverged Did2/Vps46 Orthologues from the Protozoan Parasite Giardia lamblia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The endosomal compartment performs extensive sorting functions in most eukaryotes, some of which are accomplished with the help of the multivesicular body (MVB) sorting pathway. This pathway depends on the sequential action of complexes, termed the endosomal sorting complex required for transport (ESCRT). After successful sorting, the crucial step of recycling of the ESCRT complex components requires the activation of the AAA ATPase Vps4, and Did2/Vps46 plays an important role in this activation event. The endolysosomal system of the protozoan parasite Giardia lamblia appears to lack complexity, for instead of having distinct early endosomes, late endosomes and lysosomes, there are only peripheral vesicles (PVs) that are located close to the cell periphery. Additionally, comparative genomics studies predict the presence of only a subset of the ESCRT components in G. lamblia. Thus, it is possible that the MVB pathway is not functional in G. lamblia. To address this issue, the present study focused on the two putative orthologues of Did2/Vps46 of G. lamblia as their function is likely to be pivotal for a functional MVB sorting pathway. In spite of considerable sequence divergence, compared to other eukaryotic orthologues, the proteins encoded by both these genes have the ability to function as Did2/Vps46 in the context of the yeast ESCRT pathway. Furthermore, they also localized to the cellular periphery, where PVs are also located. Thus, this report is the first to provide experimental evidence indicating the presence of a functional ESCRT component in G. lamblia by characterizing the putative Did2/Vps46 orthologues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475. doi:10.1128/CMR.14.3.447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Azmi IF, Davies BA, Xiao J et al (2008) ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev Cell 14:50–61. doi:10.1016/j.devcel.2007.10.021

    Article  CAS  PubMed  Google Scholar 

  3. Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993. doi:10.1093/emboj/17.11.2982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Diamond LS, Harlow DR, Cunnick CC (1978) A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72:431–432

    Article  CAS  PubMed  Google Scholar 

  5. Hanson PI, Shim S, Merrill SA (2009) Cell biology of the ESCRT machinery. Curr Opin Cell Biol 21:568–574. doi:10.1016/j.ceb.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  6. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91. doi:10.1016/j.devcel.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  7. Hurley JH (2008) ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 20:4–11. doi:10.1016/j.ceb.2007.12.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jimenez AJ, Maiuri P, Lafaurie-Janvore J (2014) ESCRT machinery is required for plasma membrane repair. Science 343:1247136. doi:10.1126/science.1247136

    Article  PubMed  Google Scholar 

  9. Kane AV, Ward HD, Keusch GT, Pereira ME (1991) In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J Parasitol 77:974–981

    Article  CAS  PubMed  Google Scholar 

  10. Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155. doi:10.1016/s0092-8674(01)00434-2

    Article  CAS  PubMed  Google Scholar 

  11. Lanfredi-Rangel A, Attias M, de Carvalho TM et al (1998) The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol 123:225–235. doi:10.1006/jsbi.1998.4035

    Article  CAS  PubMed  Google Scholar 

  12. Leung KF, Dacks JB, Field MC (2008) Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9:1698–1716. doi:10.1111/j.1600-0854.2008.00797

    Article  CAS  PubMed  Google Scholar 

  13. Longtine MS, McKenzie A, Demarini DJ et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961. doi:10.1002/(SICI)1097-0061(199807)14:10<953:AID-YEA293>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  14. López-reyes I, Bañuelos C, Betanzos A, Orozco E (2009) A bioinformatical approach to study the endosomal sorting complex required for transport (ESCRT) machinery in protozoan parasites: the Entamoeba histolytica Case. Bioinformatics—Trends and methodologies, In tech, pp 289–312

  15. Marti M, Li Y, Schraner EM et al (2003) The secretory apparatus of an ancient eukaryote : protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Mol Biol Cell 14:1433–1447. doi:10.1091/mbc.E02-08-0467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. McDonald B, Martin-Serrano J (2009) No strings attached: the ESCRT machinery in viral budding and cytokinesis. J Cell Sci 122:2167–2177. doi:10.1242/jcs.028308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Miras SL, Merino MC, Gottig N et al (2013) The giardial VPS35 retromer subunit is necessary for multimeric complex assembly and interaction with the vacuolar protein sorting receptor. Biochim Biophys Acta 1833:2628–2638. doi:10.1016/j.bbamcr.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  18. Muzioł T, Pineda-Molina E, Ravelli RB et al (2006) Structural basis for budding by the ESCRT-III factor CHMP3. Dev Cell 10:821–830. doi:10.1016/j.devcel.2006.03.013

    Article  PubMed  Google Scholar 

  19. Nickerson DP, West M, Henry R, Odorizzi G (2010) Regulators of Vps4 ATPase activity at endosomes differentially influence the size and rate of formation of intralumenal vesicles. Mol Biol Cell 21:1023–1032. doi:10.1091/mbc.E09-0776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Obita T, Saksena S, Ghazi-Tabatabai S et al (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449:735–739. doi:10.1038/nature06171

    Article  CAS  PubMed  Google Scholar 

  21. Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95:847–858. doi:10.1016/S0092-8674(00)81707-9

    Article  CAS  PubMed  Google Scholar 

  22. Reyes FC, Buono RA, Roschzttardtz H et al (2014) A novel endosomal sorting complex required for transport (ESCRT) component in Arabidopsis thaliana controls cell expansion and development. J Biol Chem 289:4980–4988. doi:10.1074/jbc.M113.529685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Samson RY, Obita T, Hodgson B et al (2011) Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol Cell 41:186–196. doi:10.1016/j.molcel.2010.12.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Saksena S, Sun J, Chu T, Emr SD (2007) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32:561–573. doi:10.1016/j.tibs.2007.09.010

    Article  CAS  PubMed  Google Scholar 

  25. Shestakova A, Hanono A, Drosner S et al (2010) Assembly of the AAA ATPase Vps4 on ESCRT-III. Mol Biol Cell 21:1059–1071. doi:10.1091/mbc.E09-07-0572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sinha A, Mandal S, Banerjee S et al (2011) Identification and characterization of a FYVE domain from the early diverging eukaryote Giardia lamblia. Curr Microbiol 62:1179–1184. doi:10.1007/s00284-010-9845-5

    Article  CAS  PubMed  Google Scholar 

  27. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Waterhouse AM, Procter JB, Martin DM et al (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhao J, Lin W, Ma X et al (2010) The protein kinase Hal5p is the high-copy suppressor of lithium-sensitive mutations of genes involved in the sporulation and meiosis as well as the ergosterol biosynthesis in Saccharomyces cerevisiae. Genomics 95:290–298. doi:10.1016/j.ygeno.2010.02.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alok Kumar Sil for his valuable suggestions during the preparation of this manuscript. This study was supported by funding from Bose Institute. Somnath Dutta is a fellow of the Council of Scientific and Industrial Research (09/015(0423)/2010-EMR-1); Nabanita Saha and Atrayee Ray are fellows of University Grant Commission (F.2-8/2002 (SA-1) dated 04.10.2012 and F.2-8/2002 (SA-1) dated 04.04.2013 respectively). Authors also acknowledge the help of Ms. Boni Halder and DBT-IPLS Confocal Microscopy Facility, University of Calcutta, for assistance with imaging and the Central Instrument Facility of Bose Institute for real-time PCR and DNA sequencing.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimonti Sarkar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Saha, N., Ray, A. et al. Significantly Diverged Did2/Vps46 Orthologues from the Protozoan Parasite Giardia lamblia . Curr Microbiol 71, 333–340 (2015). https://doi.org/10.1007/s00284-015-0844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0844-4

Keywords

Navigation