Skip to main content
Log in

Display of Fungi Xylanase on Escherichia coli Cell Surface and Use of the Enzyme in Xylan Biodegradation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The cell surface display technique allows expression of target proteins or peptides on microbial cell surface by fusing an appropriate protein as an anchoring motif. Herein, we constructed an Escherichia coli-based whole-cell biocatalyst displaying Thermomyces lanuginosus DSM 5826 xylanase (XynA) on the cell surface and endowed the E. coli cells with the ability to degrade xylan. The XynA was fused in frame to the C-terminus of Lpp-OmpA fusion previously shown to direct various other heterologous proteins to E. coli cell surface. The expressed Lpp-OmpA-XynA fusion protein has a molecular weight of approximately 37 kDa, which was confirmed by SDS-PAGE and Western blot analysis. The enzyme activity of the surface-displayed xylanase showed clear halo around the colony. The XynA-displaying E. coli-based whole-cell biocatalyst xylanase activity was mainly detected with whole cells by determination of activity. The XynA-displaying E. coli-based whole-cell biocatalyst showed highest XynA activity at pH 6.2 and 65 °C, respectively. These results suggest that E. coli, which displayed the xylanase on its surface, could be used as a whole-cell biocatalyst in xylooligosaccharide production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  2. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221

    Article  CAS  PubMed  Google Scholar 

  3. Chu YF, Hsu CH, Soma PK, Lo YM (2009) Immobilization of bioluminescent E. coli cells using natural and artificial fibers treated with polyethyleneimine. Bioresour Technol 100:3167–3174

    Article  CAS  PubMed  Google Scholar 

  4. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rve 29:3–23

    Article  CAS  Google Scholar 

  5. Coughlan MP, Hazlewood GP (1993) β-1,4-d-xylan degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289

    CAS  PubMed  Google Scholar 

  6. Daugherty PS, Chen G, Olson MJ, Iverson BL, Georgiou G (1998) Antibody affinity maturation using bacterial surface display. Protein Eng 11:825–832

    Article  CAS  PubMed  Google Scholar 

  7. Francisco JA, Earhart CF, Georgiou G (1992) Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc Nat Acad Sci 89:2713–2717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Francisco JA, Georgiou G (1994) The expression of recombinant proteins on the external surface of Escherichia coli. Ann NY Acad Sci 745:372–382

    Article  CAS  PubMed  Google Scholar 

  9. George G, Daren LS, Stathopoulos C, Heather LP, John M, Charles FE (1996) Display of β-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp-OmpA-lactamase fusions. Protein Eng 9(2):239–247

    Article  Google Scholar 

  10. Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R (1997) Display of heterologous proteins in the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34

    Article  CAS  PubMed  Google Scholar 

  11. Gomes J, Gomes I, Kreiner W, Esterbauer H, Sinner M, Steiner W (1993) Production of high level xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J Biotechnol 30:283–297

    Article  CAS  Google Scholar 

  12. Jo JH, Im EM, Kim SH, Lee HH (2011) Surface display of human lactoferrin using a glycosyl phosphatidylinositol-anchored protein of Saccharomyces cerevisiae in Pichia pastoris. Biotechnol Lett 33:1113–1120

    Article  CAS  PubMed  Google Scholar 

  13. Jo JH, Han CW, Kim SH, Kwon HJ, Lee HH (2014) Surface display expression of Bacillus licheniformis lipase in Escherichia coli using Lpp-OmpA chimera. J Microbiol 52(10):856–862

    Article  CAS  PubMed  Google Scholar 

  14. Karami A, Latifi AM, Khodi S (2014) Comparison of the organophosphorus hydrolase surface display using InaVN and Lpp-OmpA systems in Escherichia coli. J Microbiol Biotechnol 24(3):379–385

    Article  CAS  PubMed  Google Scholar 

  15. Khandeparker R, Numan MT (2008) Bifunctional xylanases and their potential use in biotechnology. J Microbiol Biotechnol 35:635–644

    Article  CAS  Google Scholar 

  16. Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58:1216–1233

    Article  CAS  PubMed  Google Scholar 

  17. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol Amsterdam 21:45–52

    Article  CAS  Google Scholar 

  18. Li M (2000) Applications of display technology in protein analysis. Nat Biotechnol 18:1251–1256

    Article  CAS  PubMed  Google Scholar 

  19. Liu W, Zhao H, Jia B, Xu L, Yan Y (2010) Surface display of active lipase in Saccharomyces cerevisiae using Cwp2 as an anchor protein. Biotechnol Lett 32:255–260

    Article  CAS  PubMed  Google Scholar 

  20. Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

    Article  CAS  PubMed  Google Scholar 

  21. Polizeli M, Rizzatti A, Monti R, Terenzi H, Jorge J, Amorim D (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  22. Pugsley AP, Kornacker MG (1991) Secretion of the cell surface lipoprotein pullulanase in Escherichia coli. Cooperation or competition between the specific secretion pathway and the lipoprotein sorting pathway. J Biol Chem 26:13640–13645

    Google Scholar 

  23. Sambrook J, Ressell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  24. Schreuder MP, Deen C, Boersma WJ, Pouwels PH, Klis FM (1991) Yeast expressing hepatitis B virus surface antigen determinants on its surface: implications for a possible oral vaccine. Vaccine 14:383–388

    Article  Google Scholar 

  25. Stathopoulos C, Georgiou G, Earhart CF (1992) Characterization of Escherichia coli expressing an Lpp-OmpA(46–159)-PhoA fusion protein localized in the outer membrane. Appl Microbiol Biotechnol 45:12–119

    Google Scholar 

  26. Subramaniyan S, Perma P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  CAS  PubMed  Google Scholar 

  27. Su GD, Zhang X, Lin Y (2010) Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol Lett 32:1131–1136

    Article  CAS  PubMed  Google Scholar 

  28. Tatjana C, Vladimir M (1996) Purification and properties of the xylanase produced by Thermomyces lanuginosus. Enzyme Microb Technol 19:289–296

    Article  Google Scholar 

  29. Wei Q, Weilan S (2011) Cloning, expression and characterization of glycoside hydrolase family 11 endoxylanase from Bacillus pumilus ARA. Biotechnol Lett 33:1407–1416

    Article  Google Scholar 

  30. Weill CE, Hanke P (1962) Thin-layer chromatography of malto-oligosaccharides. Anal Chem 34:1736–1737

    Article  CAS  Google Scholar 

  31. Wittrup KD (2001) Protein engineering by cell-surface display. Curr Opin Biotechnol 12:395–399

    Article  CAS  PubMed  Google Scholar 

  32. Wu HW, Pei JJ, Jiang Y, Song X, Shao WL (2010) pHsh vectors, a novel expression system of Escherichia coli for the largescale production of recombinant enzymes. Biotechnol Lett 32:795–801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Project of Science and Technology Development Program of Yantai (No. 2014ZH118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, W., Xue, Y. & Ding, Q. Display of Fungi Xylanase on Escherichia coli Cell Surface and Use of the Enzyme in Xylan Biodegradation. Curr Microbiol 70, 779–785 (2015). https://doi.org/10.1007/s00284-015-0781-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0781-2

Keywords

Navigation