Skip to main content
Log in

Comparison of Genome Sequencing Technology and Assembly Methods for the Analysis of a GC-Rich Bacterial Genome

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Improvements in technology and decreases in price have made de novo bacterial genomic sequencing a reality for many researchers, but it has created a need to evaluate the methods for generating a complete and accurate genome assembly. We sequenced the GC-rich Caulobacter henricii genome using the Illumina MiSeq, Roche 454, and Pacific Biosciences RS II sequencing systems. To generate a complete genome sequence, we performed assemblies using eight readily available programs and found that builds using the Illumina MiSeq and the Roche 454 data produced accurate yet numerous contigs. SPAdes performed the best followed by PANDAseq. In contrast, the Celera assembler produced a single genomic contig using the Pacific Biosciences data after error correction with the Illumina MiSeq data. In addition, we duplicated this build using the Pacific Biosciences data with HGAP2.0. The accuracy of these builds was verified by pulsed-field gel electrophoresis of genomic DNA cut with restriction enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of Multimillion-Sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl Environ Microbiol. 77:3846–3852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. bio.biomedicine.gu.se/cutter2/. Accessed 2014

  4. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569

    Article  CAS  PubMed  Google Scholar 

  5. Consortium, T.H.M.P (2012) A framework for human microbiome research. Nature 486:215–221

    Article  Google Scholar 

  6. Consortium, T.H.M.P (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  7. Darling AE, Mau B, Perna NT (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ely B, Gerardot CJ (1988) Use of pulsed-field-gradient gel electrophoresis to construct a physical map of the Caulobacter crescentus genome. Gene 68:323–333

    Article  CAS  PubMed  Google Scholar 

  9. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  10. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jackman SD, Birol I (2010) Assembling genomes using short-read sequencing technology. Genome Biol 11:202

    Article  PubMed Central  PubMed  Google Scholar 

  12. Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, McVey SD, Radune D, Bergman NH, Phillippy AM (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14:R101

    Article  PubMed Central  PubMed  Google Scholar 

  13. Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ, Salzberg SL (2013) GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics 29:1718–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA et al (2000) A whole-genome assembly of Drosophila. Science 287:2196–2204

    Article  CAS  PubMed  Google Scholar 

  16. Narzisi G, Mishra B (2011) Comparing de novo genome assembly: the long and short of it. PLoS ONE 6:e19175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Phillippy AM, Schatz MC, Pop M (2008) Genome assembly forensics: finding the elusive mis-assembly. Genome Biol 9:R55

    Article  PubMed Central  PubMed  Google Scholar 

  18. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom 13:341

    Article  CAS  Google Scholar 

  19. Schatz MC, Phillippy AM, Sommer DD, Delcher AL, Puiu D, Narzisi G, Salzberg SL, Pop M (2011) Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies. Brief Bioinform 14:213–224

    Article  PubMed Central  PubMed  Google Scholar 

  20. Shin SC, Ahn do H, Kim SJ, Lee H, oh TJ, Lee JE, Park H (2013) Advantages of single-molecule real-time sequencing in high-GC content genomes. PLoS One 8:e68824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. www.illumina.com. Accessed 2014

  22. www.pacificbiosciences.com. Accessed 2014

  23. www.qiagen.com. Accessed 2014

  24. Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 29:2669–2677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by a fellowship from The Southern Region Educational Board (SREB) to DS and NIH grant GM076277 to BE. We would like to thank Nicole Rapicavoli at Pacific Biosciences for her assistance with the HGAP2 assembly, Alexey Gurevich and Anton Korobeynikov at the Algorithmic Biology Lab, St. Petersburg, Russia for their support with the SPAdes and QUAST programs, and special thanks to Nathan Elger and Paul Sagona who are a part of the Research Cyberinfrastructure at The University of South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derrick Scott.

Electronic supplementary material

Supplemental data are available at Current Microbiology online.

Supplementary material 1 (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, D., Ely, B. Comparison of Genome Sequencing Technology and Assembly Methods for the Analysis of a GC-Rich Bacterial Genome. Curr Microbiol 70, 338–344 (2015). https://doi.org/10.1007/s00284-014-0721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0721-6

Keywords

Navigation