Skip to main content
Log in

In Vitro Synergistic Activities of Antimicrobial Peptide Brevinin-2CE with Five Kinds of Antibiotics Against Multidrug-Resistant Clinical Isolates

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial peptides are the promising candidates for withstanding multidrug-resistant bacteria (MDRB) which were caused by the misuse and extensive use of antibiotics. In this research, in vitro activities of one antimicrobial cationic peptide, brevinin-2CE alone and in combination with five kinds of antibiotics were assessed against clinical isolates of extended-spectrum β-lactamase-producing Escherichia coli and methicillin-resistant Staphylococcus aureus. The results showed that most of the combination groups had synergistic effects. Also, it was obvious that brevinin-2CE had more rapid and severe action on the tested MDRBs which demonstrated that brevinin-2CE and the antibiotics had different antimicrobial mechanisms. Thus, it was presumed that the antimicrobial peptides destroyed the bacterial cells via pore formation mechanisms which lead to the increasing of membrane permeability; and then the other compounds like antibiotics might enter into the cells and accomplish the antimicrobial activities more rapidly and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al-Ghaferi N, Kolodziejek J, Nowotny N, Coquet L, Jouenne T, Leprince J, Vaudry H, King JD, Conlon JM (2010) Antimicrobial peptides from the skin secretions of the South-East Asian frog Hylarana erythraea (Ranidae). Peptides 31(4):548–554. doi:10.1016/j.peptides.2009.12.013

    Article  CAS  PubMed  Google Scholar 

  2. Baranska-Rybak W, Cirioni O, Dawgul M, Sokolowska-Wojdylo M, Naumiuk L, Szczerkowska-Dobosz A, Nowicki R, Roszkiewicz J, Kamysz W (2011) Activity of antimicrobial peptides and conventional antibiotics against superantigen positive Staphylococcus aureus isolated from the patients with neoplastic and inflammatory erythrodermia. Chemother Res Pract 2011:270932. doi:10.1155/2011/270932

    PubMed Central  PubMed  Google Scholar 

  3. Bevins CL, Zasloff M (1990) Peptides from frog skin. Annu Rev Biochem 59:395–414. doi:10.1146/annurev.bi.59.070190.002143

    Article  CAS  PubMed  Google Scholar 

  4. Borde JP, Kern WV (2012) Treatment of MRSA infections. Dtsch Med Wochenschr 137(49):2553–2557. doi:10.1055/s-0032-1327283

    Article  CAS  PubMed  Google Scholar 

  5. Cassone M, Vogiatzi P, La Montagna R, De Olivier Inacio V, Cudic P, Wade JD, Otvos L Jr (2008) Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics. Peptides 29(11):1878–1886. doi:10.1016/j.peptides.2008.07.016

    Article  CAS  PubMed  Google Scholar 

  6. Conlon JM, Al-Ghaferi N, Abraham B, Sonnevend A, Coquet L, Leprince J, Jouenne T, Vaudry H, Iwamuro S (2006) Antimicrobial peptides from the skin of the Tsushima brown frog Rana tsushimensis. Comp Biochem Physiol Toxicol Pharmacol 143(1):42–49. doi:10.1016/j.cbpc.2005.11.022

    Article  CAS  Google Scholar 

  7. Conlon JM, Ahmed E, Condamine E (2009) Antimicrobial properties of brevinin-2-related peptide and its analogs: efficacy against multidrug-resistant Acinetobacter baumannii. Chem Biol Drug Des 74(5):488–493. doi:10.1111/j.1747-0285.2009.00882.x

    Article  CAS  PubMed  Google Scholar 

  8. Desbois AP, Gemmell CG, Coote PJ (2010) In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic methicillin-resistant Staphylococcus aureus (MRSA) infections. Int J Antimicrob Agents 35(6):559–565. doi:10.1016/j.ijantimicag.2010.01.016

    Article  CAS  PubMed  Google Scholar 

  9. Giacometti A, Cirioni O, Barchiesi F, Scalise G (2000) In-vitro activity and killing effect of polycationic peptides on methicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics. Diagn Microbiol Infect Dis 38(2):115–118

    Article  CAS  PubMed  Google Scholar 

  10. He K, Ludtke SJ, Huang HW, Worcester DL (1995) Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry 34(48):15614–15618

    Article  CAS  PubMed  Google Scholar 

  11. Hossain MA, Guilhaudis L, Sonnevend A, Attoub S, van Lierop BJ, Robinson AJ, Wade JD, Conlon JM (2011) Synthesis, conformational analysis and biological properties of a dicarba derivative of the antimicrobial peptide, brevinin-1BYa. Eur Biophys J 40(4):555–564. doi:10.1007/s00249-011-0679-2

    Article  CAS  PubMed  Google Scholar 

  12. Huang HW (1999) Peptide–lipid interactions and mechanisms of antimicrobial peptides. Novartis Found Symp 225:188–200 discussion 200-186

    CAS  PubMed  Google Scholar 

  13. Huang HW, Wu Y (1991) Lipid–alamethicin interactions influence alamethicin orientation. Biophys J 60(5):1079–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jiang Y, Yi X, Li M, Wang T, Qi T, She X (2012) Antimicrobial activities of recombinant mouse beta-defensin 3 and its synergy with antibiotics. J Mater Sci Mater Med 23(7):1723–1728. doi:10.1007/s10856-012-4645-z

    Article  CAS  PubMed  Google Scholar 

  15. Lee BS, Hwang JH, Lee SH, Jang SE, Jang ES, Jo HJ, Shin CM, Park YS, Kim JW, Jung SH, Kim N, Lee DH, Lee JK, Ahn S (2012) Risk factors of organ failure in patients with bacteremic cholangitis. Dig Dis Sci. doi:10.1007/s10620-012-2478-8

    Google Scholar 

  16. Li Q, Huang J, Guo H, Guo X, Zhu Y, Dong K (2012) Bactericidal activity against meticillin-resistant Staphylococcus aureus of a novel eukaryotic therapeutic recombinant antimicrobial peptide. Int J Antimicrob Agents 39(6):496–499. doi:10.1016/j.ijantimicag.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Lin MC, Hui CF, Chen JY, Wu JL (2013) Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 44:139–148. doi:10.1016/j.peptides.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  18. Lu Z, Zhai L, Wang H, Che Q, Wang D, Feng F, Zhao Z, Yu H (2010) Novel families of antimicrobial peptides with multiple functions from skin of Xizang plateau frog, Nanorana parkeri. Biochimie 92(5):475–481. doi:10.1016/j.biochi.2010.01.025

    Article  CAS  PubMed  Google Scholar 

  19. Ludtke SJ, He K, Wu Y, Huang HW (1994) Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta 1190(1):181–184

    Article  CAS  PubMed  Google Scholar 

  20. Morikawa N, Hagiwara K, Nakajima T (1992) Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun 189(1):184–190

    Article  CAS  PubMed  Google Scholar 

  21. Nicolas P, Vanhoye D, Amiche M (2003) Molecular strategies in biological evolution of antimicrobial peptides. Peptides 24(11):1669–1680. doi:10.1016/j.peptides.2003.08.017

    Article  CAS  PubMed  Google Scholar 

  22. Nuotio L, Schneitz C, Nilsson O (2013) Effect of competitive exclusion in reducing the occurrence of Escherichia coli producing extended-spectrum beta-lactamases in the ceca of broiler chicks. Poult Sci 92(1):250–254. doi:10.3382/ps.2012-02575

    Article  CAS  PubMed  Google Scholar 

  23. Rennie RP (2012) Current and future challenges in the development of antimicrobial agents. Handb Exp Pharmacol 211:45–65. doi:10.1007/978-3-642-28951-4_4

    Article  CAS  PubMed  Google Scholar 

  24. Rishi P, Preet S, Bharrhan S, Verma I (2011) In vitro and in vivo synergistic effects of cryptdin 2 and ampicillin against Salmonella. Antimicrob Agents Chemother 55(9):4176–4182. doi:10.1128/AAC.00273-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Schroppel K, Riessen R (2013) Multiresistant gram-negative bacteria: a bacterial challenge of the twenty-first century. Medizinische Klinik Intensivmedizin und Notfallmedizin. doi:10.1007/s00063-012-0160-8

  26. Sueke H, Kaye SB, Neal T, Hall A, Tuft S, Parry CM (2010) An in vitro investigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Invest Ophthalmol Vis Sci 51(8):4151–4155. doi:10.1167/iovs.09-4839

    Article  PubMed  Google Scholar 

  27. Wayne (2012) Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 9th edn, Approved standard M07-A9

  28. Wu Y, He K, Ludtke SJ, Huang HW (1995) X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J 68(6):2361–2369. doi:10.1016/S0006-3495(95)80418-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yang Y, Liu H, Liu G, Ran X (2010) Antibacterial effect of autologous platelet-rich gel derived from health volunteers in vitro. Zhongguo xiu fu chong jian wai ke za zhi 24(5):571–576

    CAS  PubMed  Google Scholar 

  30. Zhao J, Sun Y, Li Z, Su Q (2011) Molecular cloning of novel antimicrobial peptide genes from the skin of the Chinese brown frog, Rana chensinensis. Zoolog Sci 28(2):112–117. doi:10.2108/zsj.28.112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the Fundamental Research Funds for the Central Universities (2014 grants from SNNU) and the Innovative Experiment Projects of Educational Ministry of China for Undergraduate (201210781028, cx13075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Sun or Zhi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, Y., Sun, Y. et al. In Vitro Synergistic Activities of Antimicrobial Peptide Brevinin-2CE with Five Kinds of Antibiotics Against Multidrug-Resistant Clinical Isolates. Curr Microbiol 68, 685–692 (2014). https://doi.org/10.1007/s00284-014-0529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0529-4

Keywords

Navigation