Skip to main content

Advertisement

Log in

A Rhizobium selenitireducens Protein Showing Selenite Reductase Activity

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Biobarriers remove, via precipitation, the metalloid selenite (SeO −23 ) from groundwater; a process that involves the biological reduction of soluble SeO −23 to insoluble elemental red selenium (Se0). The enzymes associated with this reduction process are poorly understood. In Rhizobium selenitireducens at least two enzymes are potentially involved; one, a nitrite reductase reduces SeO −23 to Se0 but another protein may also be involved which is investigated in this study. Proteins from R. selenitireducens cells were precipitated with ammonium sulfate and run on native electrophoresis gels. When these gels were incubated with NADH and SeO −23 a band of precipitated Se0 developed signifying the presence of a SeO −23 reducing protein. Bands were cut from the gel and analyzed for peptides via LCMSMS. The amino acid sequences associated with the bands indicated the presence of an NADH:flavin oxidoreductase that resembles YP_001326930 from Sinorhizobium medicae. The protein is part of a protein family termed old-yellow-enzymes (OYE) that contain a flavin binding domain. OYE enzymes are often involved in protecting cells from oxidative stress and, due in part to an active site that has a highly accessible binding pocket, are generally active on a wide range of substrates. This report is the first of an OYE enzyme being involved in SeO −23 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112

    Article  CAS  PubMed  Google Scholar 

  2. Basaglia M, Toffanin A, Baldan E, Bottegal M, Shapleigh JP, Casella S (2007) Selenite-reducing capacity of the copper-containing nitrite reductase of Rhizobium sullae. FEMS Microbiol Lett 269:124–130

    Article  CAS  PubMed  Google Scholar 

  3. Bébien M, Kirsch J, Méjean V, Verméglio A (2002) Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. Microbiology 148:3865–3872

    PubMed  Google Scholar 

  4. Chiong M, Gonzales E, Barra R, Vasquez C (1988) Purification and biochemical of tellurite-reducing activities from Thermus thermophilus HB8. J Bacteriol 170:3269–3273

    CAS  PubMed Central  PubMed  Google Scholar 

  5. DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–247

    CAS  Google Scholar 

  6. Fitzpatrick TB, Amrhein N, Macheroux P (2003) Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 278:19891–19897

    Article  CAS  PubMed  Google Scholar 

  7. Fox KM, Karplus A (1994) Old yellow enzyme at 2 Å resolution: overall structure, ligand binding, and comparison with related flavoproteins. Structure 2:1089–1105

    Article  CAS  PubMed  Google Scholar 

  8. Griese JJ, Jakob RP, Schwarzinger S, Dobbek H (2006) Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction. J Mol Biol 361:140–152

    Article  CAS  PubMed  Google Scholar 

  9. Hunter WJ (2007) An Azospira oryzae (syn Dechlorosoma suillum) strain that reduces selenate and selenite to elemental red selenium. Curr Microbiol 54:376–381

    Article  CAS  PubMed  Google Scholar 

  10. Hunter WJ, Kuykendall LD (2006) Identification and characterization of an Aeromonas salmonicida (syn Haemophilus piscium) strain that reduces selenite to elemental red selenium. Curr Microbiol 52:305–309

    Article  CAS  PubMed  Google Scholar 

  11. Hunter WJ, Kuykendall LD (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. Strain B1. Curr Microbiol 55:344–349

    Article  CAS  PubMed  Google Scholar 

  12. Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57:83–88

    Article  CAS  PubMed  Google Scholar 

  13. Hunter WJ, Manter DK (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr Microbiol 58:493–498

    Article  CAS  PubMed  Google Scholar 

  14. Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite-reducing a-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460

    Article  CAS  PubMed  Google Scholar 

  15. Juris SJ, Shah K, Shokat K, Dixon JE, Vacratsis PO (2006) Identification of otubain 1 as a novel substrate for the Yersinia protein kinase using chemical genetics and mass spectrometry. FEBS Lett 580:179–183

    Article  CAS  PubMed  Google Scholar 

  16. Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 152:731–743

    Article  CAS  PubMed  Google Scholar 

  17. Kitzing K, Fitzpatrick TB, Wilken C, Sawa J, Bourenkov GP, Macheroux P, Clausen T (2005) The 1.3 Å crystal structure of the flavoprotein YqjM reveals a novel class of old yellow enzymes. J Biol Chem 280:27904–27913

    Article  CAS  PubMed  Google Scholar 

  18. Lund K, DeMoss JA (1976) Association-dissociation behavior and subunits structure of heat-released nitrate reductase from Escherichia coli. J Biol Chem 251:2207–2213

    CAS  PubMed  Google Scholar 

  19. Massey M, Müller F, Feldberg R, Schuman M, Sullivan PA, Howell LG, Mayhew SG, Matthews G, Foust GP (1969) The reactivity of flavoproteins with sulfite, possible relevance to the problem of oxygen reactivity. J Biol Chem 244:3999–4006

    CAS  PubMed  Google Scholar 

  20. Massey V, Strickland S, Mayhew SG, Howell LG, Engel PC, Matthews RG, Schuman M, Sullivan PA (1969) The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochem Biophys Res Commun 36:891–897

    Article  CAS  PubMed  Google Scholar 

  21. Opperman DJ, Piater LA, van Heerden E (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bact 190:3076–3082

    Article  CAS  PubMed  Google Scholar 

  22. Pierru B, Grosse S, Pignol D, Sabaty M (2006) Genetic and biochemical evidence for the involvement of a molybdenum-dependent enzyme in one of the selenite reduction pathways of Rhodobacter sphaeroides f. sp. denitrificans IL106. Appl Environ Microbiol 72:3147–3153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Seko Y, Imura N (1997) Active oxygen generation as a possible mechanism of selenium toxicity. Biomed Environ Sci 10:333–339

    CAS  PubMed  Google Scholar 

  24. Spiegelhauer O (2010) Determinants of substrate binding and protonation in the flavoenzyme xenobiotic reductase A. J Mol Biol 403:286–298

    Article  CAS  PubMed  Google Scholar 

  25. Spiegelhauer O, Mende S, Dickert F, Knauer SH, Ullmann GM, Dobbek H (2010) Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study. J Mol Biol 398:66–82

    Article  CAS  PubMed  Google Scholar 

  26. Theorell H (1935) Reindarstellung der Wirkungsgruppe des gelben Ferments. Biochemische Zeitschrift 275:344–346

    CAS  Google Scholar 

  27. Tomei FA, Barton LL, Lemanski CL, Zocco TG (1962) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38:1328–1333

    Article  Google Scholar 

  28. Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11:223–227

    Article  CAS  PubMed  Google Scholar 

  29. Watts CA, Ridley H, Condie KL, Leaver JT, Richardson DJ, Butler CS (2003) Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol Lett 228:273–279

    Article  CAS  PubMed  Google Scholar 

  30. Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme Family of flavoproteins. Appl Environ Microbiol 70:3566–3574. doi:10.1128/AEM.70.6.3566-3574.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yanke LJ, Bryant RD, Laishley EJ (1995) Hydrogenase (I) of Clostridium pasteurianum functions a novel selenite reductase. Anaerobe 1:61–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Robin Montenieri and Joshua Padilla for their expert technical assistance. Manufacturer and product brand names are given for the reader’s convenience and do not reflect endorsement by the US government. This article was the work of US government employees engaged in their official duties and is exempt from copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Hunter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, W.J. A Rhizobium selenitireducens Protein Showing Selenite Reductase Activity. Curr Microbiol 68, 311–316 (2014). https://doi.org/10.1007/s00284-013-0474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0474-7

Keywords

Navigation