Skip to main content
Log in

Inhibition of Ribosomal Subunit Synthesis in Escherichia coli by the Vanadyl Ribonucleoside Complex

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The increase in antibiotic-resistant microorganisms has driven a search for new antibiotic targets and novel antimicrobial agents. A large number of different antibiotics target bacterial ribosomal subunit formation. Several specific ribonucleases are important in the processing of rRNA during subunit biogenesis. This work demonstrates that the ribonuclease inhibitor, vanadyl ribonucleoside complex (VRC), can inhibit RNases involved in ribosomal subunit formation. The ribosomal subunit synthesis rate was significantly decreased and ribosomal RNA from the subunit precursors was degraded. VRC had no inhibitory effect on translation. VRC also potentiated the inhibitory effects of an aminoglycoside and a macrolide antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson RM (1999) The pandemic of antibiotic resistance. Nat Med 5:147–149

    Article  PubMed  CAS  Google Scholar 

  2. Berger SL (1987) Isolation of cytoplasmic RNA: ribonucleoside-vanadyl complexes. Methods Enzymol 152:227–234

    Article  PubMed  CAS  Google Scholar 

  3. Brosius J, Dull TJ, Noller HF (1980) Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 77:201–204

    Article  PubMed  CAS  Google Scholar 

  4. Cars O, Hedin A, Heddini A (2011) The global need for effective antibiotics-moving towards concerted action. Drug Resist Updat 14:68–69

    Article  PubMed  Google Scholar 

  5. Champney WS (2001) Bacterial ribosomal subunit synthesis: a novel antibiotic target. Curr Drug Targets Infect Disord 1:19–36

    Article  CAS  Google Scholar 

  6. Champney WS (2003) Bacterial ribosomal subunit assembly is an antibiotic target. Curr Top Med Chem 3:929–947

    Article  PubMed  CAS  Google Scholar 

  7. Champney WS (2006) The other target for ribosomal antibiotics: inhibition of bacterial ribosomal subunit formation. Infect Disord Drug Targets 6:377–390

    Article  PubMed  CAS  Google Scholar 

  8. Champney WS (ed) (2008) New antibiotic targets. Humana Press Inc., Totowa

    Google Scholar 

  9. Champney WS, Burdine R (1996) 50S ribosomal subunit synthesis and translation are equivalent targets for erythromycin inhibition in Staphylococcus aureus. Antimicrob Agents Chemother 40:1301–1303

    PubMed  CAS  Google Scholar 

  10. Champney WS, Burdine R (1998) Macrolide antibiotic inhibition of translation and 50S ribosomal subunit assembly in methicillin-resistant Staphylococcus aureus cells. Microb Drug Resist 4:169–174

    Article  PubMed  CAS  Google Scholar 

  11. Champney WS, Rodgers WK (2007) Retapamulin inhibition of translation and 50S ribosomal subunit formation in Staphylococcus aureus cells. Antimicrob Agents Chemother 51:3385–3387

    Article  PubMed  CAS  Google Scholar 

  12. Champney WS, Tober CL (2000) Specific inhibition of 50S ribosomal subunit formation in Staphylococcus aureus cells by 16-membered macrolide, lincosamide, and streptogramin B antibiotics. Curr Microbiol 41:126–135

    Article  PubMed  CAS  Google Scholar 

  13. Chittum HS, Champney WS (1995) Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells. Curr Microbiol 30:273–279

    Article  PubMed  CAS  Google Scholar 

  14. Eidem TM, Roux CM, Dunman PM (2012) RNA decay: a novel therapeutic target in bacteria. Wiley Interdiscip Rev RNA 3:443–454

    Article  PubMed  CAS  Google Scholar 

  15. Foster C, Champney WS (2008) Characterization of a 30S ribosomal subunit assembly intermediate found in Escherichia coli cells growing with neomycin or paromomycin. Arch Microbiol 189:441–449

    Article  PubMed  CAS  Google Scholar 

  16. Frazier AD, Champney WS (2012) Impairment of ribosomal subunit synthesis in aminoglycoside-treated ribonuclease mutants of Escherichia coli. Arch Microbiol 194(12):1033–1041

    Article  PubMed  CAS  Google Scholar 

  17. Frazier AD, Champney WS (2012) The vanadyl ribonucleoside complex inhibits ribosomal subunit formation in Staphylococcus aureus. J Antimicrob Chemother 67(9):2152–2157

    Article  PubMed  CAS  Google Scholar 

  18. Gutgsell NS, Jain C (2012) Role of precursor sequences in the ordered maturation of E. coli 23S ribosomal RNA. RNA 18:345–353

    Article  PubMed  CAS  Google Scholar 

  19. Högberg LD, Heddini A, Cars O (2010) The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol Sci 31:509–515

    Article  PubMed  Google Scholar 

  20. Jett BD, Hatter KL, Huycke MM, Gilmore MS (1997) Simplified agar plate method for quantifying viable bacteria. Biotechniques 23:648–650

    PubMed  CAS  Google Scholar 

  21. Kushner SR, Maples VF, Champney WS (1977) Conditionally lethal ribosomal protein mutants: characterization of a locus required for modification of 50S subunit proteins. Proc Natl Acad Sci USA 74:467–471

    Article  PubMed  CAS  Google Scholar 

  22. Li Z, Pandit S, Deutscher MP (1999) RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA. EMBO J 18:2878–2885

    Article  PubMed  CAS  Google Scholar 

  23. McCoy LS, Xie Y, Tor Y (2011) Antibiotics that target protein synthesis. Wiley Interdiscip Rev RNA 2:209–232

    Article  PubMed  CAS  Google Scholar 

  24. Mehta R, Champney WS (2002) 30S ribosomal subunit assembly is a target for inhibition by aminoglycosides in Escherichia coli. Antimicrob Agents Chemother 46:1546–1549

    Article  PubMed  CAS  Google Scholar 

  25. Mehta R, Champney WS (2003) Neomycin and paromomycin inhibit 30S ribosomal subunit assembly in Staphylococcus aureus. Curr Microbiol 47:237–243

    Article  PubMed  CAS  Google Scholar 

  26. Reddy KJ, Gilman M (2001) Preparation of bacterial RNA. Curr Protoc Mol Biol. Chapter 4:Unit4.4

    Google Scholar 

  27. Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2011) RNA: a laboratory manual. Cold Spring Harbor Protocols, Cold Spring, NY

    Google Scholar 

  28. Rosen T (2011) Antibiotic resistance: an editorial review with recommendations. J Drugs Dermatol 10:724–733

    PubMed  Google Scholar 

  29. Silvers JA, Champney WS (2005) Accumulation and turnover of 23S ribosomal RNA in azithromycin-inhibited ribonuclease mutant strains of Escherichia coli. Arch Microbiol 184:66–77

    Article  PubMed  CAS  Google Scholar 

  30. Song WS, Lee M, Lee K (2011) RNase G participates in processing of the 5′-end of 23S ribosomal RNA. J Microbiol 49:508–511

    Article  PubMed  CAS  Google Scholar 

  31. Tenson T, Mankin A (2006) Antibiotics and the ribosome. Mol Microbiol 59:1664–1677

    Article  PubMed  CAS  Google Scholar 

  32. Usary J, Champney WS (2001) Erythromycin inhibition of 50S ribosomal subunit formation in Escherichia coli cells. Mol Microbiol 40:951–962

    Article  PubMed  CAS  Google Scholar 

  33. Wachi M, Umitsuki G, Shimizu M, Takada A, Nagai K (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem Biophys Res Commun 259:483–488

    Article  PubMed  CAS  Google Scholar 

  34. Wallis MG, Schroeder R (1997) The binding of antibiotics to RNA. Prog Biophys Mol Biol 67:141–154

    Article  PubMed  CAS  Google Scholar 

  35. Xiao J, Feehery CE, Tzertzinis G, Maina CV (2009) E. coli RNase III(E38A) generates discrete-sized products from long dsRNA. RNA 15:984–991

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by an AREA Grant 1R15GM086783 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Scott Champney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frazier, A.D., Champney, W.S. Inhibition of Ribosomal Subunit Synthesis in Escherichia coli by the Vanadyl Ribonucleoside Complex. Curr Microbiol 67, 226–233 (2013). https://doi.org/10.1007/s00284-013-0350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0350-5

Keywords

Navigation