Skip to main content
Log in

Involvement of Minerals in Adherence of Legionella pneumophila to Surfaces

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Legionella pneumophila is the causative agent of 90 % of Legionnaires’ disease cases. This bacterium lives naturally in fresh water and can colonize biofilms, which play an important role in the protection of Legionella against environmental stress factors. Relationship between the presence of minerals in water and Legionella adherence to surfaces is not well-known. In this study, we studied influence of minerals on bacterial adherence. For the first time, to our knowledge, this report shows that calcium and magnesium in a less extent, enhances the adherence of Legionella to surfaces compared to the bacteria behavior in distilled water. Treatment with proteinase K of live cells showed that surface proteins do not seem to play a crucial role in bacteria adherence to surfaces. Our results represent a first step in understanding effect of ions on Legionella adherence to surfaces. Such field of research could be helpful to better understand biofilm colonization by this bacterium to improve Legionella risk management in water networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abu Kwaik Y, Venkataraman C, Harb OS, Gao LY (1998) Signal transduction in the protozoan host Hartmannella vermiformis upon attachment and invasion by Legionella micdadei. Appl Environ Microbiol 64:3134–3139

    PubMed  CAS  Google Scholar 

  2. Advincula MC, Petersen D, Rahemtulla F, Advincula R, Lemons JE (2007) Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants. J Biomed Mater Res B Appl Biomater 80:107–120

    PubMed  Google Scholar 

  3. Alleron L, Merlet N, Lacombe C, Frere J (2008) Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Curr Microbiol 57:497–502

    Article  PubMed  CAS  Google Scholar 

  4. Borella P, Montagna MT, Romano-Spica V, Stampi S, Stancanelli G, Triassi M, Marchesi I, Bargellini A, Neglia R, Paglionico N, Spilotros G, Moscato U, Casati G, Legnani PP, Sacchetti R, Ossi C, Moro M, Ribera G (2003) Relationship between mineral content of domestic hot water and microbial contamination. J Trace Elem Med Biol 17(Suppl 1):37–43

    PubMed  CAS  Google Scholar 

  5. Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    PubMed  CAS  Google Scholar 

  6. Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR (1999) Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol 65:4594–4600

    PubMed  CAS  Google Scholar 

  7. Fields BS (1996) The molecular ecology of Legionellae. Trends Microbiol 4:286–290

    Article  PubMed  CAS  Google Scholar 

  8. Fliermans CB (1996) Ecology of Legionella: from data to knowledge with a little wisdom. Microb Ecol 32:203–228

    Article  PubMed  Google Scholar 

  9. Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  PubMed  CAS  Google Scholar 

  10. Hindre T, Bruggemann H, Buchrieser C, Hechard Y (2008) Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology 154:30–41

    Article  PubMed  CAS  Google Scholar 

  11. James BW, Mauchline WS, Dennis PJ, Keevil CW (1997) A study of iron acquisition mechanisms of Legionella pneumophila grown in chemostat culture. Curr Microbiol 34:238–243

    Article  PubMed  CAS  Google Scholar 

  12. Rodier MH, Koubar M, Garduno RA, Frere J (2011) Passage through Tetrahymena tropicalis enhances the resistance to stress and the infectivity of Legionella pneumophila. FEMS Microbiol Lett 325:10–15

    Article  PubMed  Google Scholar 

  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  14. Laurant P, Touyz RM (2000) Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. J Hypertens 18:1177–1191

    Article  PubMed  CAS  Google Scholar 

  15. Merino S, Gavin R, Altarriba M, Izquierdo L, Maguire ME, Tomas JM (2001) The MgtE Mg2+ transport protein is involved in Aeromonas hydrophila adherence. FEMS Microbiol Lett 198:189–195

    Article  PubMed  CAS  Google Scholar 

  16. Nardini M, Lang DA, Liebeton K, Jaeger KE, Dijkstra BW (2000) Crystal structure of pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases. J Biol Chem 275:31219–31225

    Article  PubMed  CAS  Google Scholar 

  17. Rampersaud A, Utsumi R, Delgado J, Forst SA, Inouye M (1991) Ca2(+)-enhanced phosphorylation of a chimeric protein kinase involved with bacterial signal transduction. J Biol Chem 266:7633–7637

    PubMed  CAS  Google Scholar 

  18. Riedewald F (2006) Bacterial adhesion to surfaces: the influence of surface roughness. PDA J Pharm Sci Technol 60:164–171

    PubMed  Google Scholar 

  19. Sahney NN, Summersgill JT, Ramirez JA, Miller RD (2001) Inhibition of oxidative burst and chemotaxis in human phagocytes by Legionella pneumophila zinc metalloprotease. J Med Microbiol 50:517–525

    PubMed  CAS  Google Scholar 

  20. Santegoeds CM, Schramm A, de Beer D (1998) Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 9:159–167

    Article  PubMed  CAS  Google Scholar 

  21. Shirtliff ME, Mader JT, Camper AK (2002) Molecular interactions in biofilms. Chem Biol 9:859–871

    Article  PubMed  CAS  Google Scholar 

  22. Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281

    Article  PubMed  CAS  Google Scholar 

  23. Smith CA, Toogood HS, Baker HM, Daniel RM, Baker EN (1999) Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution. J Mol Biol 294:1027–1040

    Article  PubMed  CAS  Google Scholar 

  24. Smith RJ (1995) Calcium and bacteria. Adv Microb Physiol 37:83–133

    Article  PubMed  CAS  Google Scholar 

  25. Straley SC, Plano GV, Skrzypek E, Haddix PL, Fields KA (1993) Regulation by Ca2+ in the Yersinia low-Ca2+ response. Mol Microbiol 8:1005–1010

    Article  PubMed  CAS  Google Scholar 

  26. Surman SB, Morton LHG, Keevil CW (1993) The use of biofilm generator in the evaluation of a biocide for use in water treatment. In: Edyvean R (ed) Proceedings of the ninth International Biodeterioration and Biodegradation Society symposium. Institute of Chemical Engineers, Rugby, pp 6–12

    Google Scholar 

  27. Tisa LS, Adler J (1992) Calcium ions are involved in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 89:11804–11808

    Article  PubMed  CAS  Google Scholar 

  28. Tisa LS, Adler J (1995) Cytoplasmic free-Ca2+ level rises with repellents and falls with attractants in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 92:10777–10781

    Article  PubMed  CAS  Google Scholar 

  29. Trombe MC, Rieux V, Baille F (1994) Mutations which alter the kinetics of calcium transport alter the regulation of competence in Streptococcus pneumoniae. J Bacteriol 176:1992–1996

    PubMed  CAS  Google Scholar 

  30. van Asselt EJ, Dijkstra BW (1999) Binding of calcium in the EF-hand of Escherichia coli lytic transglycosylase Slt35 is important for stability. FEBS Lett 458:429–435

    Article  PubMed  Google Scholar 

  31. Werthen M, Lundgren T (2001) Intracellular Ca(2+) mobilization and kinase activity during acylated homoserine lactone-dependent quorum sensing in Serratia liquefaciens. J Biol Chem 276:6468–6472

    Article  PubMed  CAS  Google Scholar 

  32. Yu XC, Margolin W (1997) Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16:5455–5463

    Article  PubMed  CAS  Google Scholar 

  33. Zacheus OM, Lehtola MJ, Korhonen LK, Martikainen PJ (2001) Soft deposits, the key site for microbial growth in drinking water distribution networks. Water Res 35:1757–1765

    Article  PubMed  CAS  Google Scholar 

  34. Zakharov SD, Li X, Red’ko TP, Dilley RA (1996) Calcium binding to the subunit c of E. coli ATP-synthase and possible functional implications in energy coupling. J Bioenerg Biomembr 28:483–494

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Research Agency (ANR) for its participation in this project financing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Koubar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koubar, M., Rodier, MH. & Frère, J. Involvement of Minerals in Adherence of Legionella pneumophila to Surfaces. Curr Microbiol 66, 437–442 (2013). https://doi.org/10.1007/s00284-012-0295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0295-0

Keywords

Navigation