Skip to main content
Log in

Diversity of Chemotactic Heterotrophic Bacteria Associated with Arctic Cyanobacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The abundance and diversity of chemotactic heterotrophic bacteria associated with Arctic cyanobacteria was determined. The viable numbers ranged between 104 and 106 cell g−1 cyanobacterial biomass. A total of 112 morphotypes, representing 22 phylotypes based on their 16S rRNA sequence similarity were isolated from the samples. All the phylotypes were Gram-negative with affiliation to the proteobacterial and bacteroidetes divisions. Among the 22 phylotypes, 14 were chemotactic to glucose. Majority of the phylotypes were psychrotolerant showing growth up to 30 °C. Representatives of Alphaproteobacteria, the genus Flavobacterium and the gammaproteobacterial Alcanivorax sp, were psychrophilic with growth at or below 18 °C. A significant percentage of phylotypes were pigmented (~68 %), rich in unsaturated membrane fatty acids and tolerated pH values and NaCl concentrations between 5.0–8.0 and 0.15–1.0 M, respectively. The percentages of phylotypes producing extracellular cold-active enzymes at 4 °C were amylase (18.18 %), lipase and urease (45.45 %), caseinase (59.09 %) and gelatinase (31.8 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler J (1966) Chemotaxis in bacteria. Science 153(3737):708–716

    Article  PubMed  CAS  Google Scholar 

  2. Alam SI, Singh L (2002) Proteolytic heterotrophic bacteria of cyanobacterial assemblage from Schirmacher oasis, Antarctica, capable of growing under extreme conditions. Curr Sci 83:1000–1004

    Google Scholar 

  3. Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull (Woods Hole) 143:265–277

    Article  Google Scholar 

  4. Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J (2009) High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J 3(3):314–325

    Article  PubMed  CAS  Google Scholar 

  5. Bernardet J-F (2010) Family I. Flavobacteriaceae. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s Manual of Systematic Bacteriology, vol IV, 2nd edn. Springer, New York, pp 106–314

    Google Scholar 

  6. Bernardet J-F, Bowman JP (2006) The genus Flavobacterium. Prokaryotes 7:481–531

    Article  Google Scholar 

  7. Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-grand) 50(5):631–642

    CAS  Google Scholar 

  8. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57(10):2259–2261

    Article  PubMed  CAS  Google Scholar 

  9. Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Ann Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  10. Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T, Polson SW, Lubitz W, Richardson LL (2003) Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 53(4):1115–1122

    Article  PubMed  CAS  Google Scholar 

  11. Edwards E, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes-characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  PubMed  CAS  Google Scholar 

  12. Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6(12):1228–1243

    Article  PubMed  Google Scholar 

  13. Gallucci KK, Paerl HW (1983) Pseudomonas aeruginosa chemotaxis associated with blooms of N2-fixing blue-green algae (Cyanobacteria). Appl Environ Microbiol 45(2):557–562

    PubMed  CAS  Google Scholar 

  14. Holding AJ, Collee GJ (1971) Routine biochemical tests. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Elsevier, Academic Press Inc., London, pp 1–32

    Google Scholar 

  15. Jagannadham MV, Rao VJ, Shivaji S (1991) The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: purification, structure, and interaction with synthetic membranes. J Bacteriol 173(24):7911–7917

    PubMed  CAS  Google Scholar 

  16. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4(2):191–202

    Article  PubMed  CAS  Google Scholar 

  17. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    Article  PubMed  CAS  Google Scholar 

  18. Lupton FS, Marshall KC (1981) Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance. Appl Environ Microbiol 42(6):1085–1092

    PubMed  CAS  Google Scholar 

  19. Muffler K, Ulber R (2008) Fed-batch cultivation of the marine bacterium Sulfitobacter pontiacus using immobilized substrate and purification of sulfite oxidase by application of membrane adsorber technology. Biotechnol Bioeng 99(4):870–875

    Article  PubMed  CAS  Google Scholar 

  20. Paerl HW (1982) Interactions with bacteria. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria, vol 19. University of California Press, Berkeley, pp 441–461

    Google Scholar 

  21. Paerl HW (1996) Microscale physiological and ecological studies of aquatic cyanobacteria: macroscale implications. Microsc Res Tech 33(1):47–72

    Article  PubMed  CAS  Google Scholar 

  22. Paerl HW, Kellar PE (1978) Significance of bacterial-anabaena (Cyanophyceae) associations with respect to N2 fixation in freshwater. J Phycol 14(3):254–260

    Article  Google Scholar 

  23. Reddy GSN (2003) Biodiversity of psychrophilic bacteria from Antarctica. PhD Thesis, Center for Cellular and Molecular Biology, Hyderabad, India

  24. Shivaji S, Bhanu NV, Aggarwal RK (2000) Identification of Yersinia pestis as the causative organism of plague in India as determined by 16S rDNA sequencing and RAPD-based genomic fingerprinting. FEMS Microbiol Lett 189(2):247–252

    Article  PubMed  CAS  Google Scholar 

  25. Shivaji S, Ray MK, Kumar GS, Reddy GSN, Saisree L, Wynn-Williams DD (1991) Identification of Janthinobacterium lividum from the soils of the islands of Scotia Ridge and from Antarctic peninsula. Polar Biol 11(4):267–271

    Article  Google Scholar 

  26. Sorokin DY (1995) Sulfitobacter pontiacus gen. nov., sp. nov.—a new heterotrophic bacterium from the Black Sea, specialized on sulphite oxidation. Microbiology (Moscow English translation of Mikrobiologiia) 64:295–305

    Google Scholar 

  27. Srinivas TNR, Rao SSSN, Reddy PVV, Pratibha MS, Sailaja B, Kavya B, Hara Kishore K, Begum Z, Singh SM, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-alesund, Svalbard. Arctic Curr Microbiol 59(5):537–547

    CAS  Google Scholar 

  28. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 33:152–155

    Google Scholar 

  29. Stevenson BS, Waterbury JB (2006) Isolation and identification of an epibiotic bacterium associated with heterocystous Anabaena cells. Biol Bull (Woods Hole) 210:73–77

    Article  Google Scholar 

  30. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526

    PubMed  CAS  Google Scholar 

  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  32. Tuomainen J, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K (2006) Community structure of the bacteria associated with Nodularia sp. (Cyanobacteria) aggregates in the Baltic Sea. Microb Ecol 52(3):513–522

    Article  PubMed  CAS  Google Scholar 

  33. Varin T, Lovejoy C, Jungblut DA, Vincent WF, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911

    Article  CAS  Google Scholar 

  34. Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology—Algae and cyanobacteria in extreme environments. Springer, The Netherlands, pp 289–301

    Google Scholar 

  35. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48 Pt 2:339–348

    Article  PubMed  CAS  Google Scholar 

  36. Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, p 121

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank the Department of Biotechnology, Council of Scientific and Industrial Research, Government of India, for financial support to SS. SS would also like to thank NCAOR and Ministry of Earth Sciences, Government of India, for providing financial and logistic support for the trip to Arctic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisinthy Shivaji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, S., Pratibha, M.S., Manasa, P. et al. Diversity of Chemotactic Heterotrophic Bacteria Associated with Arctic Cyanobacteria. Curr Microbiol 66, 64–71 (2013). https://doi.org/10.1007/s00284-012-0243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0243-z

Keywords

Navigation