Skip to main content
Log in

PA2800 Plays an Important Role in Both Antibiotic Susceptibility and Virulence in Pseudomonas aeruginosa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an important human pathogen which causes a variety of infections. P. aeruginosa infections are often difficult to treat due to the pathogen’s resistance to many antibiotics. Previously, it has been reported that a transposon insertion mutant in gene PA2800 of P. aeruginosa PAO1 was more sensitive to tetracycline and ciprofloxacin. Further characterization of this gene, a vacJ homolog, in this study indicated that this gene plays an important role in both antibiotic susceptibility and virulence in P. aeruginosa. The role of PA2800 in antibiotic susceptibility probably signifies its involvement in maintaining outer membrane stability, similar to the role of vacJ in E. coli and Shigella flexneri. However, in contrast to vacJ in other bacteria, PA2800 also affects antibiotic susceptibility by affecting the expression of oprH in P. aeruginosa. As shown by in vivo studies using a Drosophila melanogaster infection model, significantly increased virulence was observed in the PA2800 mutant when compared to the wild type, and such a difference is likely a result of disrupted outer membrane stability and altered expression of znuA in the mutant. The role of PA2800 or vacJ in antibiotic susceptibility and pathogenicity seems to be unique in P. aeruginosa in which it affects both outer membrane stability as well as gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel Malek SM, Badran YR (2010) Pseudomonas aeruginosa PAO1 adapted to 2-phenoxyethanol shows cross-resistance to dissimilar biocides and increased susceptibility to antibiotics. Folia Microbiol (Praha) 55:588–592

    Article  CAS  Google Scholar 

  2. Bjarnason J, Southward CM, Surette MG (2003) Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol 185:4973–4982

    Article  PubMed  CAS  Google Scholar 

  3. Chen L, Yang L, Zhao X, Shen L, Duan K (2010) Identification of Pseudomonas aeruginosa genes associated with antibiotic susceptibility. Sci China Life Sci 53:1247–1251

    Article  PubMed  CAS  Google Scholar 

  4. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Article  PubMed  CAS  Google Scholar 

  5. Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491

    Article  PubMed  CAS  Google Scholar 

  6. Duan K, Surette MG (2007) Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189:4827–4836

    Article  PubMed  CAS  Google Scholar 

  7. Farra A, Islam S, Stralfors A, Sorberg M, Wretlind B (2008) Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int J Antimicrob Agents 31:427–433

    Article  PubMed  CAS  Google Scholar 

  8. Fito-Boncompte L, Chapalain A, Bouffartigues E et al (2011) Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun 79:1176–1186

    Article  PubMed  CAS  Google Scholar 

  9. Gabbianelli R, Scotti R, Ammendola S, Petrarca P, Nicolini L,and Battistoni A Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells. BMC Microbiol 11:36

  10. Gabbianelli R, Scotti R, Ammendola S, Petrarca P, Nicolini L, Battistoni A (2011) Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells. BMC Microbiol 11:36

    Article  PubMed  CAS  Google Scholar 

  11. Heffernan EJ, Harwood J, Fierer J, Guiney D (1992) The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J Bacteriol 174:84–91

    PubMed  CAS  Google Scholar 

  12. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  PubMed  CAS  Google Scholar 

  13. Hoang TT, Kutchma AJ, Becher A, Schweizer HP (2000) Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:59–72

    Article  PubMed  CAS  Google Scholar 

  14. Holloway BW, Romling U, Tummler B (1994) Genomic mapping of Pseudomonas aeruginosa PAO. Microbiology 140(Pt 11):2907–2929

    Article  PubMed  CAS  Google Scholar 

  15. Kim S, Watanabe K, Shirahata T, Watarai M (2004) Zinc uptake system (znuA locus) of Brucella abortus is essential for intracellular survival and virulence in mice. J Vet Med Sci 66:1059–1063

    Article  PubMed  CAS  Google Scholar 

  16. Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE (1999) PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305–316

    Article  PubMed  CAS  Google Scholar 

  17. Malinverni JC, Silhavy TJ (2009) An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. Proc Natl Acad Sci USA 106:8009–8014

    Article  PubMed  CAS  Google Scholar 

  18. Mesaros N, Nordmann P, Plesiat P et al (2007) Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 13:560–578

    Article  PubMed  CAS  Google Scholar 

  19. Nakamura S, Shchepetov M, Dalia AB, Clark SE, Murphy TF, Sethi S, Gilsdorf JR, Smith AL, Weiser JN (2011) Molecular basis of increased serum resistance among pulmonary isolates of non-typeable Haemophilus influenzae. PLoS Pathog 7:e1001247

    Article  PubMed  CAS  Google Scholar 

  20. Nicas TI, Hancock RE (1983) Alteration of susceptibility to EDTA, polymyxin B and gentamicin in Pseudomonas aeruginosa by divalent cation regulation of outer membrane protein H1. J Gen Microbiol 129:509–517

    PubMed  CAS  Google Scholar 

  21. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  PubMed  CAS  Google Scholar 

  22. Schweizer HP (1993) Two plasmids, X1918 and Z1918, for easy recovery of the xylE and lacZ reporter genes. Gene 134:89–91

    Article  PubMed  CAS  Google Scholar 

  23. Sharp R, Jansons IS, Gertman E, Kropinski AM (1996) Genetic and sequence analysis of the cos region of the temperate Pseudomonas aeruginosa bacteriophage, D3. Gene 177:47–53

    Article  PubMed  CAS  Google Scholar 

  24. Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG, Rabin HR, Surette MG (2008) Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 4:e1000184

    Article  PubMed  Google Scholar 

  25. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  26. Stover CK, Pham XQ, Erwin AL et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki T, Murai T, Fukuda I, Tobe T, Yoshikawa M, Sasakawa C (1994) Identification and characterization of a chromosomal virulence gene, vacJ, required for intercellular spreading of Shigella flexneri. Mol Microbiol 11:31–41

    Article  PubMed  CAS  Google Scholar 

  28. Tabata A, Nagamune H, Maeda T, Murakami K, Miyake Y, Kourai H (2003) Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob Agents Chemother 47:2093–2099

    Article  PubMed  CAS  Google Scholar 

  29. Yang X, Becker T, Walters N, Pascual DW (2006) Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge. Infect Immun 74:3874–3879

    Article  PubMed  CAS  Google Scholar 

  30. Young M, Hancock RE (1992) Fluoroquinolone supersusceptibility mediated by outer membrane protein OprH overexpression in Pseudomonas aeruginosa: evidence for involvement of a nonporin pathway. Antimicrob Agents Chemother 36:2365–2369

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PCSIRT (No. IRT1174), NSFC (Grant No. 81171620) and Shaanxi Provincial Government (No. 2011JM 4013 and No. 11JK0611). KD is supported by grants from NSERC and HSCF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangmin Duan.

Additional information

Lixin Shen and Xiangli Gao contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Gao, X., Wei, J. et al. PA2800 Plays an Important Role in Both Antibiotic Susceptibility and Virulence in Pseudomonas aeruginosa . Curr Microbiol 65, 601–609 (2012). https://doi.org/10.1007/s00284-012-0196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0196-2

Keywords

Navigation