Skip to main content

Advertisement

Log in

Recovery Comparison of Two Virus Concentration Methods from Wastewater Using Cell Culture and Real-Time PCR

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Enteric viruses are shed in the feces and may be present in environmental waters. Their detection in wastewater, even at low concentration, is a major challenge. In this study, recoveries of Echovirus 7 (EV7), virions and RNA in wastewater, using virus concentration methods were determined to evaluate the detection of infectious viruses and the possibility of recovering viral genomes. Two virus concentration methods, PEG precipitation method and two-phase separation method, were applied to recovery experiments of EV7–virions from wastewater, in parallel with recovery experiments of EV7 RNA. The titration of EV7 virions was carried out by cell culture using human rhabdomyosarcoma tumor tissue and the EV7 RNA quantification was performed by real-time PCR. The mean recovery yields of EV7 virions using the PEG precipitation method and the two-phase separation method were 78.5 ± 10.99 and 83.1 ± 0.28 %, respectively. Besides, EV7 RNA recoveries obtained using the PEG precipitation method were four times higher than those using the two-phase separation method. According to our results, the two methods enable to concentrate both infectious viruses and viral genomes. Moreover, considering the protocol time and cost together with the ratio of the EV7 virion recovery to the EV7 RNA recovery, the two-phase separation method (83.1/2.71 %, or 30.6) seems to be more appropriate for selective concentration of viral virions than the PEG precipitation method (78.5/10.33 %, or 7.6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albinana-Gimenez N, Clemente-Casares P, Calgua B, Huguet JM, Courtois S, Girones R (2009) Comparison of methods for concentrating human adenoviruses, polyomavirus JC and noroviruses in source waters and drinking water using quantitative PCR. J Virol Methods 158:104–109

    Article  PubMed  CAS  Google Scholar 

  2. Amdiouni H, Faouzi A, Fariat N, Hassar M, Soukri A, Nourlil J (2012) Detection and molecular identification of human adenoviruses and enteroviruses in wastewater from Morocco. Lett Appl Microbiol 54(4):359–366. doi:10.1111/j.1472-765X.2012.03220.x

  3. Bartram A, Poon C, Neufeld J (2009) Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant. Biotechniques 47:1019–1022

    Article  PubMed  CAS  Google Scholar 

  4. Bosch A, Guix S, Sano D, Pinto RM (2008) New tools for the study and direct surveillance of viral pathogens in water. Curr Opin Biotechnol 19:295–301

    Article  PubMed  CAS  Google Scholar 

  5. Chapron CD, Ballester NA, Fontaine JH, Frades CN, Margolin AB (2000) Detection of astroviruses, enteroviruses, and adenovirus type 40 and 41 in surface waters collected and evaluated by the information Collection rule and an integrated cell culture-nested PCR procedure. Appl Environ Microbiol 66:2520–2525

    Article  PubMed  CAS  Google Scholar 

  6. Deboosere N, Horm SV, Pinon A, Gachet J, Coldefy C, Buchy P, Vialette M (2011) Development and validation of a concentration method for the detection of influenza a viruses from large volumes of surface water. Appl Environ Microbiol 77:3802–3808

    Article  PubMed  CAS  Google Scholar 

  7. Di Pasquale S, Paniconi M, Auricchio B, Orefice L, Schultz AC, De Medici D (2010) Comparison of different concentration methods for the detection of hepatitis A virus and calicivirus from bottled natural mineral waters. J Virol Methods 165:57–63

    Article  PubMed  Google Scholar 

  8. Gibbons CD, Rodríguez RA, Tallon L, Sobsey MD (2010) Evaluation of positively charged alumina nanofibre cartridge filters for the primary concentration of noroviruses, adenoviruses and male-specific coliphages from seawater. J Appl Microbiol 109:635–641

    PubMed  CAS  Google Scholar 

  9. Gibson KE, Opryszko MC, Schissler JT, Guo Y, Schwab KJ (2011) Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana. Am J Trop Med Hyg 84:20–29

    Article  PubMed  CAS  Google Scholar 

  10. Haramoto E, Katayama H, Oguma K, Ohgaki S (2007) Recovery of naked viral genomes in water by virus concentration methods. J Virol Methods 142:169–173

    Article  PubMed  CAS  Google Scholar 

  11. Hovi T, Stenvik M, Partanen H, Kangas A (2001) Poliovirus surveillance by examining sewage specimens: quantitative recovery of virus after introduction into sewerage at remote upstream location. Epidemiol Infect 127:101–106

    Article  PubMed  CAS  Google Scholar 

  12. Ikner LA, Soto-Beltran M, Bright KR (2011) New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water. Appl Environ Microbiol 77:3500–3506

    Article  PubMed  CAS  Google Scholar 

  13. Kamel AH, Ali MA, El-Nady HG, Aho S, Pothier P, Belliot G (2010) Evidence of the co-circulation of enteric viruses in sewage and in the population of greater Cairo. J Appl Microbiol 108:1620–1629

    Article  PubMed  CAS  Google Scholar 

  14. Kiulia NM, Netshikweta R, Page NA, Van Zyl WB, Kiraithe MM, Nyachieo A, Mwenda JM, Taylor MB (2010) The detection of enteric viruses in selected urban and rural river water and sewage in Kenya, with special reference to rotaviruses. J Appl Microbiol 109:818–828

    Article  PubMed  CAS  Google Scholar 

  15. Kokkinos K, Filippidou S, Karlou K, Vantarakis A (2010) Molecular typing of enteroviruses, adenoviruses, and hepatitis A viruses in untreated and treated sewage of a biological treatment plant in Greece. Food Environ Virol 2:89–96

    Article  Google Scholar 

  16. Lee H, Kim M, Paik SY, Lee CH, Jheong WH, Kim J, Ko G (2011) Evaluation of electropositive filtration for recovering norovirus in water. J Water Health 9:27–36

    Article  PubMed  CAS  Google Scholar 

  17. Liang S, Xie GC, Xu ZQ, Li JS, Li DT, Feng SL, Duan ZJ (2011) Study on concentration of nuorovirus gene group II from environmental water. Bing Du Xue Bao 27:58–63

    PubMed  Google Scholar 

  18. Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117

    Article  PubMed  Google Scholar 

  19. Maunula L, Miettinen IT, von Bonsdorff CH (2005) Norovirus outbreaks from drinking water. Emerg Infect Dis 11:1716–1721

    Article  PubMed  Google Scholar 

  20. Meleg E, Jakab F, Kocsis B, Banyai K, Melegh B, Szucs G (2006) Human astroviruses in raw sewage samples in Hungary. J Appl Microbiol 101:1123–1129

    Article  PubMed  CAS  Google Scholar 

  21. Melegh B, Szucs G (2008) Detection and quantification of group C rotaviruses in communal sewage. Appl Environ Microbiol 74:3394–3399

    Article  PubMed  Google Scholar 

  22. Minor PD (1985) Growth, assay and purification of picornaviruses. Mahy BW (ed) Virology, a practical approach, IRL Press, Oxford/Washington, pp 25–41

  23. Myrmel M, Berg EM, Grinde B, Rimstad E (2006) Enteric viruses in inlet and outlet samples from sewage treatment plants. J Water Health 4:197–209

    PubMed  CAS  Google Scholar 

  24. Pintó RM, Costafreda MI, Bosch A (2009) Risk assessment in shellfish-borne outbreaks of hepatitis A. Appl Environ Microbiol 75:7350–7355

    Article  PubMed  Google Scholar 

  25. Piqueur MA, Verstrepen WA, Bruynseels P, Mertens AH (2009) Improvement of a real-time RT-PCR assay for the detection of enterovirus RNA. Virol J 6:95

    Article  PubMed  Google Scholar 

  26. Prado T, Silva DM, Guilayn WC, Rose TL, Gaspar AM, Miagostovich MP (2011) Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants. Water Res 45:1287–1297

    Article  PubMed  CAS  Google Scholar 

  27. Reed JL, Muench H (1938) A simple method of estimating per cent endpoint. Am J Hyg 27:493–497

    Google Scholar 

  28. Reynolds KA, Mena KD, Gerba CP (2008) Risk of waterborne illness via drinking water in the United States. Rev Environ Contam Toxicol 192:117–158

    Article  PubMed  Google Scholar 

  29. Rhodes ER, Hamilton DW, See MJ, Wymer L (2011) Evaluation of hollow-fiber ultrafiltration primary concentration of pathogens and secondary concentration of viruses from water. J Virol Methods 176:38–45

    Article  PubMed  CAS  Google Scholar 

  30. Rigotto C, Kolesnikovas CK, Moresco V, Simões CM, Barardi CR (2009) Evaluation of HA negatively charged membranes in the recovery of human adenoviruses and hepatitis A virus in different water matrices. Mem Inst Oswaldo Cruz 104:970–974

    Article  PubMed  CAS  Google Scholar 

  31. Schultz AC, Perelle S, Di Pasquale S, Kovac K, De Medici D, Fach P, Sommer HM, Hoorfar J (2011) Collaborative validation of a rapid method for efficient virus concentration in bottled water. Int J Food Microbiol 145:158–166

    Article  Google Scholar 

  32. Shieh YC, Wong CI, Krantz JA, Hsub FC (2007) Detection naturally occurring enteroviruses in waters using direct RT-PCR integrated cell culture-RT-PCR. J Virol Methods 149:184–189

    Article  Google Scholar 

  33. Tong HI, Lu Y (2011) Effective detection of human adenovirus in Hawaiian waters using enhanced PCR methods. Virol J 8:57

    Article  PubMed  CAS  Google Scholar 

  34. Vantarakis A, Papapetropoulou M (1998) Detection of enteroviruses, adenoviruses in sea water in southern Greece. Water Res 32:2365–2372

    Article  CAS  Google Scholar 

  35. Wang XW, Xiong AS, Yao QH, Zhang Z, Qiao YS (2010) Direct isolation of high-quality low molecular weight RNA of pear peel from the extraction mixture containing nucleic acid. Mol Biotechnol 44:61–65

    Article  PubMed  CAS  Google Scholar 

  36. WHO (2001) Waterborne zoonoses. http://www.who.int/water_sanitation_health/diseases/zoonoses.pdf. Accessed 15 Sep 2011

  37. WHO (2003) Guidelines for environmental surveillance of poliovirus circulation. Geneva, Switzerland. http://whqlibdoc.who.int/hq/2003/WHO_V&B_03.03.pdf. Accessed 20 Feb 2009

Download references

Acknowledgments

The authors thank Prof Albert Bosch from the University of Barcelona (Barcelona, Spain) for providing us with the internal control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasna Amdiouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amdiouni, H., Maunula, L., Hajjami, K. et al. Recovery Comparison of Two Virus Concentration Methods from Wastewater Using Cell Culture and Real-Time PCR. Curr Microbiol 65, 432–437 (2012). https://doi.org/10.1007/s00284-012-0174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0174-8

Keywords

Navigation