Skip to main content

Advertisement

Log in

Simultaneous PCR Detection of Multiple Classes of Integron Integrase Genes for Determining the Presence of Multidrug-Resistant Bacteria in Environmental Samples

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Dissemination of multidrug-resistant bacteria, particularly in hospitals, has become a serious public health problem. Integrons impart antibiotic multidrug resistance in gram-negative and some gram-positive bacteria by capturing and then disseminating antibiotic resistance genes. This mechanism plays a major role in contributing to the alarmingly high prevalence of bacterial drug resistance. A universal polymerase chain reaction (PCR) primer set was attempted to design to more sensitively and specifically detect integrons in environmental samples. One set, designated intCiF3a, intCiF3b, intCiiiR3a, and intCiiiR3b, simultaneously amplifies the conserved region of the tyrosine recombinase gene family between box I and box II. This primer set generates PCR products derived from classes 1, 2, and 3 integron integrases from environmental samples such as wastewater. An unexpected finding of this study was the detection of new putative integron integrase gene sequences. This is the subject of ongoing research, which aims to provide a clear understanding of the risk to human health posed by these genetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    Article  PubMed  CAS  Google Scholar 

  2. Chang L-L, Lin H-H, Chang C-U et al (2007) Increased incidence of class 1 integrons in trimethoprim/sulfamethoxazole-resistant clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 59:1038–1045

    Article  PubMed  CAS  Google Scholar 

  3. Collis CM, Grammaticopoulos G, Briton J et al (1993) Site-specific insertion of gene cassettes into integrons. Mol Microbiol 9:41–52

    Article  PubMed  CAS  Google Scholar 

  4. Daikos GL, Kosmidis C, Tassios PT et al (2007) Enterobacteriaceae bloodstream infections: presence of integrons, risk factors, and outcome. Antimicrob Agents Chemother 51:2366–2372

    Article  PubMed  CAS  Google Scholar 

  5. Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–381

    Article  PubMed  CAS  Google Scholar 

  6. Drouin F, Mélançon J, Royl PH (2002) The IntI-Like tyrosine recombinase of Shewanella oneidensis is active as an integron integrase. J Bacteriol 184:1811–1815

    Article  PubMed  CAS  Google Scholar 

  7. Gillings M, Boucher Y, Labbate M et al (2008) The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 190:5095–5100

    Article  PubMed  CAS  Google Scholar 

  8. Kümmerer K (2004) Resistance in the environment. J Antimicrob Chemother 54:311–320

    Article  PubMed  Google Scholar 

  9. Mak JK, Kim M-J, Pham J et al (2009) Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 63:47–54

    Article  PubMed  CAS  Google Scholar 

  10. Moura A, Henriques I, Ribeiro R et al (2007) Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. J Antimicrob Chemother 60:1243–1250

    Article  PubMed  CAS  Google Scholar 

  11. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620

    Article  PubMed  CAS  Google Scholar 

  12. Nield BS, Holmes AJ, Gillings MR et al (2001) Recovery of new integron classes from environmental DNA. FEMS Microbiol Lett 195:59–65

    Article  PubMed  CAS  Google Scholar 

  13. Nunes-Düby SE, Kwonl HJ, Tirumalai RS et al (1998) Similarities and differences among 105 members of the int family of site-specific recombinases. Nucleic Acids Res 26:391–406

    Article  PubMed  Google Scholar 

  14. Shi L, Fujihara K, Sato T et al (2006) Distribution and characterization of integrons in various serogroups of Vibrio cholerae strains isolated from diarrhoeal patients between 1992 and 2000 in Kolkata, India. J Med Microbiol 55:575–583

    Article  PubMed  CAS  Google Scholar 

  15. Sørum H, L’Abée-Lund TM, Solberg A (2003) Integron-containing IncU R plasmids pRAS1 and pAr-32 from the fish pathogen Aeromonas salmonicida. Antimicrob Agents Chemother 47:1285–1290

    Article  PubMed  Google Scholar 

  16. Szczepanowski R, Krahn I, Linke B et al (2004) Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology 150:3613–3630

    Article  PubMed  CAS  Google Scholar 

  17. Szczepanowski R, Braun S, Riedel V et al (2005) The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology 151:1095–1111

    Article  PubMed  CAS  Google Scholar 

  18. van Essen-Zandbergen A, Smith H, Veldman K et al (2007) Occurrence and characteristics of class 1, 2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands. J Antimicrob Chemother 59:746–750

    Article  PubMed  Google Scholar 

  19. Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Article  PubMed  CAS  Google Scholar 

  20. Wang X, Seed B (2006) High-throughput primer and probe design. In. Dorak MT (ed) Real-time PCR. Taylor & Francis, Oxford, p 96

    Google Scholar 

  21. Xu H, Davies J, Miao V (2007) Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol 189:6276–6283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. Yoshiyuki Ueno, Kajima Technical Research Institute (KaTRI), for reviewing the manuscript. The author also thanks Dr. Masahiro Tanaka of KaTRI for having given his continuous support and encouragement for the succesful completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, S. Simultaneous PCR Detection of Multiple Classes of Integron Integrase Genes for Determining the Presence of Multidrug-Resistant Bacteria in Environmental Samples. Curr Microbiol 62, 1677–1681 (2011). https://doi.org/10.1007/s00284-011-9913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9913-5

Keywords

Navigation