Skip to main content

Advertisement

Log in

Analysis of ESBL- and AmpC-Positive Enterobacteriaceae at the Department of Neonatology, University Hospital Olomouc

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacterial infections are an important issue in current clinical medicine. The severity of infectious diseases has increased dramatically in recent years, which is also due to increasing numbers of resistant bacteria, including strains producing broad-spectrum beta-lactamases. The study aimed at determining the prevalence of ESBL- and AmpC-positive Enterobacteriaceae at the Department of Neonatology, University Hospital Olomouc. Enterobacteriaceae were isolated from clinical samples from infants hospitalized at the Department of Neonatology, University Hospital Olomouc over a period of 2 years. ESBL- and AmpC-positive isolates were subjected to basic genetic analysis. In the study period, a total of 1,526 isolates of the Enterobacteriaceae family were identified, including 55 (3.6%) cases of the ESBL phenotype and 17 (1.1%) AmpC-positive isolates. Genetic analysis of ESBL-positive isolates revealed a majority of CTX-M enzymes. Among AmpC beta-lactamases, the EBC, CIT, DHA, and MOX types were detected. An Escherichia coli strain was isolated with mutations in the promoter region of the ampC chromosomal gene that are associated with overproduction of the relevant enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aktas E, Yigit N, Yazgi H, Ayyildiz A (2002) Detection of antimicrobial resistance and extended-spectrum beta-lactamase production in Klebsiella pneumoniae strains from infected neonates. J Int Med Res 30(4):445–448

    PubMed  CAS  Google Scholar 

  2. Arlet G, Brami G, Décrè D et al (1995) Molecular characterisation by PCR-restriction fragment length polymorphism of TEM β-lactamases. FEMS Microbiol Lett 134:203–208

    PubMed  CAS  Google Scholar 

  3. Bhattacharjee A, Sen MR, Prakash P, Gaur A, Anupurba S (2008) Increased prevalence of extended-spectrum beta-lactamase producers in neonatal septicaemic cases at a tertiary referral hospital. Indian J Med Microbiol 26(4):356–360

    Article  PubMed  CAS  Google Scholar 

  4. Bizzarro MJ, Gallagher PG (2007) Antibiotic-resistant organisms in the neonatal intensive care unit. Semin Perinatol 31(1):26–32

    Article  PubMed  Google Scholar 

  5. Bogaerts P, Rodriguez-Villalobos H, Bauraing C, Deplano A, Laurent C, Berhin C, Struelens MJ, Glupczynski Y (2010) Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered at two Belgian hospitals. Pathol Biol 58(1):78–83

    Article  PubMed  CAS  Google Scholar 

  6. Caroff N, Espaze E, Gatreau D, Richet H, Reynaud A (2000) Analysis of the effects of-42 and-32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing AmpC. J Antimicrob Chemother 45:783–788

    Article  PubMed  CAS  Google Scholar 

  7. Cezário RC, Ribas RM, Abdallah VO, Carneiro CL, Gontijo Filho PP (2004) Infection and colonization by gram-negative bacilli in neonates hospitalized in High Risk Nursery at Uberlandia Federal University Hospital: etiology, resistant phenotypes and risk factors. Braz J Microbiol 35:193–198

    Article  Google Scholar 

  8. Chanawong A, M’Zali F, Heritage J, Lulitanond A, Hawkey PM (2000) Characterisation of extended-spectrum β-lactamases of the SHV family using a combination of PCR-single strand conformational polymorphism (PCR–SSCP) and PCR-restriction fragment length polymorphism (PCR–RFLP). FEMS Microbiol Lett 184:85–89

    PubMed  CAS  Google Scholar 

  9. CLSI (2007) Performance standards for antimicrobial susceptibility testing, seventeenth informational supplement. M100-S17

  10. Couto RC, Carvalho EA, Pedrosa TM, Pedroso ER, Neto MC, Biscione FM (2007) A 10-year prospective surveillance of nosocomial infections in neonatal intensive care units. Am J Infect Control 35(3):183–189

    Article  PubMed  Google Scholar 

  11. Denton M (2007) Enterobacteriaceae. Int J Antimicrob Agents 29(Suppl 3):S9–S22

    Article  PubMed  CAS  Google Scholar 

  12. Ding H, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, Wang A, Deng Q, Zhang H, Wang C, Liu L, Xu X, Wang L, Shen X (2008) The prevalence of plasmid-mediated AmpC beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China. Eur J Clin Microbiol Infect Dis 27(10):915–921

    Article  PubMed  CAS  Google Scholar 

  13. The European committee on antimicrobial susceptibility testing. http://www.eucast.org/

  14. Jain A, Roy I, Gupta MK, Kumar M, Agarwal SK (2003) Prevalence of extended-spectrum β-lactamase producing gram-negative bacteria in septicaemic neonates in a tertiary care hospital. J Med Microbiol 52:421–425

    Article  PubMed  CAS  Google Scholar 

  15. Jarlier V, Nicolas MH, Fournier G, Philippon A (1988) Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 10:867–878

    Article  PubMed  CAS  Google Scholar 

  16. Kamath S, Mallaya S, Shenoy S (2010) Nosocomial infections in neonatal intensive care units: profile, risk factor assessment and antibiogram. Indian J Pediatr 77:37–39

    Article  PubMed  Google Scholar 

  17. Kesselová M, Kolář M, Sauer P, Koukalová D, Petrželová J, Vágnerová I, Kohnová I, Kantor L, Urbánek K (2005) Molecular biology characteristics of ESBL-positive strains of Klebsiella pneumoniae collected in the Neonatal Unit of the Teaching Hospital in Olomouc. Klin Mikrobiol Inf Lék 11(1):20–24

    Google Scholar 

  18. Kolář M (2007) Clinical significance of broad-spectrum β-lactamases and experience with their identification in microbiological practice. Klin Mikrobiol Inf Lék 13:195–205

    Google Scholar 

  19. Linkin DR, Fishman NO, Patel JB, Merrill JD, Lautenbach E (2004) Risk factors for extended-spectrum beta-lactamase-producing Enterobacteriaceae in a neonatal intensive care unit. Infect Control Hosp Epidemiol 25(9):781–783

    Article  PubMed  Google Scholar 

  20. Livermore DM, Canton R, Gniadkowski M et al (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174

    Article  PubMed  CAS  Google Scholar 

  21. M’Zali FH, Gascoyne-Binzi DM, Heritage J, Hawkey PM (1996) Detection of mutations conferring extended-spectrum activity on SHV beta-lactamases using polymerase chain reaction single strand conformational polymorphism (PCR–SSCP). J Antimicrob Chemother 37(4):797–802

    Article  PubMed  Google Scholar 

  22. Pagani L, Dell’Amico E, Migliavacca R et al (2003) Multiple CTX-M-type extended-spectrum β-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol 41:4264–4269

    Article  PubMed  CAS  Google Scholar 

  23. Pai H, Kang CI, Byeon JH, Lee KD, Park WB, Kim HB, Kim EC, Oh MD, Choe KW (2004) Epidemiology and clinical features of bloodstream infections caused by AmpC-type-beta-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 48(10):3720–3728

    Article  PubMed  CAS  Google Scholar 

  24. Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162

    Article  PubMed  Google Scholar 

  25. Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Carmeli Y (2006) Clinical and economic impact of bacteremia with extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 50(4):1257–1262

    Article  PubMed  CAS  Google Scholar 

  26. Sedlakova MH, Hanulik V, Chroma M et al (2010) The potential of phenotypic methods for detecting ESBL- and AmpC-type broad-spectrum beta-lactamases. Clin Microbiol Infect 16(2):S152

    Article  Google Scholar 

  27. Shi ZY, Liu PYF, Lau YJ et al (1996) Epidemiological typing of isolates from an outbreak of infection with multidrug-resistant Enterobacter cloacae by repetitive extragenic palindromic unit b1-primed PCR and pulsed-field gel electrophoresis. J Clin Microbiol 34:2784–2790

    PubMed  CAS  Google Scholar 

  28. Singh N, Patel KM, Léger MM, Short B, Sprague BM, Kalu N, Campos JM (2002) Risk of resistant infections with Enterobacteriaceae in hospitalized neonates. Pediatr Infect Dis J 21:1029–1033

    Article  PubMed  Google Scholar 

  29. Yagi T, Wachino J, Kurokawa H et al (2005) Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 43:2551–2558

    Article  PubMed  CAS  Google Scholar 

  30. Yurdakök M (1998) Antibiotic use in neonatal sepsis. Turk J Pediatr 40(1):17–33

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant project no. IGA 9950-3. Infrastructural part of this project (Institute of Molecular and Translational Medicine) was supported by the Operational Programme Research and Development for Innovations (project CZ.1.05/2.1.00/01.0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vendula Husičková.

About this article

Cite this article

Husičková, V., Chromá, M., Kolář, M. et al. Analysis of ESBL- and AmpC-Positive Enterobacteriaceae at the Department of Neonatology, University Hospital Olomouc. Curr Microbiol 62, 1664–1670 (2011). https://doi.org/10.1007/s00284-011-9911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9911-7

Keywords

Navigation