Skip to main content
Log in

Modulatory Effects of Lactobacillus salivarius on Intestinal Mucosal Immunity of Piglets

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated that lactobacilli or their cell components can improve certain immune function in animals. The aim of this study is to investigate the effects of porcine lactobacilli on the intestinal mucosal immunity of piglets. Neonatal piglets were used as a model and were orally administrated with Lactobacillus salivarius B1 isolated from the duodenal mucosa of a healthy piglet. The feces of the piglets were collected on days 7, 14, and 21 for intestinal microflora analysis. On day 28, the piglets were sacrificed, and their intestinal mucosa samples were immediately collected to investigate the changes in intestinal morphological and immunocompetent cells. Finally, the expression of cytokines and TLRs was detected in the different intestinal segments. The results indicate that L. salivarius B1 can partially ameliorate the microflora of the feces and increase the number of intestinal immunocompetent cells, as the intraepithelial lymphocyte (P < 0.05), and the IgA-producing cells (P < 0.01) in the lactobacilli-treated group were all increased compared with those in the control group. Enhanced expression of the cytokine IL-6 gene was also observed in the ileum (P < 0.05). Moreover, L. salivarius B1 can also upregulate the expression of TLR2 in the intestinal tract at the gene and protein levels (P < 0.05). The results demonstrate that L. salivarius B1 is beneficial for the maturation of the intestinal mucosal immune system and elicited local immunomodulatory activities. In addition, the modulatory effects of L. salivarius B1 on mucosal immunity mainly depend on its extracellular components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Asong J, Wolfert MA, Maiti KK, Miller D, Boons GJ (2009) Binding and cellular activation studies reveal that toll-like receptor 2 can differentially recognize peptidoglycan from gram-positive and gram-negative bacteria. J Biol Chem 284:8643–8653

    Article  PubMed  CAS  Google Scholar 

  2. Brandtzaeg P (2009) Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol 70:505–515

    Article  PubMed  CAS  Google Scholar 

  3. Burkey TE, Skjolaas KA, Dritz SS, Minton JE (2009) Expression of porcine Toll-like receptor 2, 4 and 9 gene transcripts in the presence of lipopolysaccharide and Salmonella enterica serovars Typhimurium and Choleraesuis. Vet Immunol Immunopathol 130:96–101

    Article  PubMed  CAS  Google Scholar 

  4. Cammarota M, De Rosa M, Stellavato A, Lamberti M, Marzaioli I, Giuliano M (2009) In vitro evaluation of Lactobacillus plantarum DSMZ 12028 as a probiotic: emphasis on innate immunity. Int J Food Microbiol 135:90–98

    Article  PubMed  CAS  Google Scholar 

  5. Che C, Pang X, Hua X, Zhang B, Shen J, Zhu J, Wei H, Sun L, Chen P, Cui L, Zhao L, Yang Q (2009) Effects of human fecal flora on intestinal morphology and mucosal immunity in human flora-associated piglet. Scand J Immunol 69:223–233

    Article  PubMed  CAS  Google Scholar 

  6. Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357

    Article  PubMed  CAS  Google Scholar 

  7. Dar A, Nichani AK, Benjamin P, Lai K, Soita H, Krieg AM, Potter A, Babiuk LA, Mutwiri GK (2008) Attenuated cytokine responses in porcine lymph node cells stimulated with CpG DNA are associated with low frequency of IFNalpha-producing cells and TLR9 mRNA expression. Vet Immunol Immunopathol 123:324–336

    Article  PubMed  CAS  Google Scholar 

  8. Dicks LM, ten Doeschate K (2010) Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 alleviated symptoms of Salmonella infection, as determined in Wistar rats challenged with Salmonella enterica serovar Typhimurium. Curr Microbiol 61:184–189

    Article  PubMed  CAS  Google Scholar 

  9. Galdeano CM, Perdigon G (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226

    Article  PubMed  CAS  Google Scholar 

  10. Goodrich ME, McGee DW (1999) Effect of intestinal epithelial cell cytokines on mucosal B-cell IgA secretion: enhancing effect of epithelial-derived IL-6 but not TGF-beta on IgA + B cells. Immunol Lett 67:11–14

    Article  PubMed  CAS  Google Scholar 

  11. Iliev ID, Kitazawa H, Shimosato T, Katoh S, Morita H, He F, Hosoda M, Saito T (2005) Strong immunostimulation in murine immune cells by Lactobacillus rhamnosus GG DNA containing novel oligodeoxynucleotide pattern. Cell Microbiol 7:403–414

    Article  PubMed  CAS  Google Scholar 

  12. Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117:979–987

    Article  PubMed  CAS  Google Scholar 

  13. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388:621–625

    Article  PubMed  CAS  Google Scholar 

  14. Lavelle EC, Murphy C, O’Neill LA, Creagh EM (2010) The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol 3:17–28

    Article  PubMed  CAS  Google Scholar 

  15. Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184

    Article  PubMed  CAS  Google Scholar 

  16. Liu SYQ, Jiang P (2005) Effect of the immunization with PRRS attenuated vaccine by genital tract on antibody-secreting cells in the sows’bcaluterus. J Nanjing Agric Univ 28:29–33

    CAS  Google Scholar 

  17. Liu F, Li G, Wen K, Bui T, Cao D, Zhang Y, Yuan L (2010) Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol 23:135–149

    Article  PubMed  CAS  Google Scholar 

  18. Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307:1920–1925

    Article  PubMed  CAS  Google Scholar 

  19. Macpherson AJ (2006) IgA adaptation to the presence of commensal bacteria in the intestine. Curr Top Microbiol Immunol 308:117–136

    Article  PubMed  CAS  Google Scholar 

  20. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    Article  PubMed  CAS  Google Scholar 

  21. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  PubMed  CAS  Google Scholar 

  22. Moue M et al (2008) Toll-like receptor 4 and cytokine expression involved in functional immune response in an originally established porcine intestinal epitheliocyte cell line. Biochim Biophys Acta 1780(2):134–144

    PubMed  CAS  Google Scholar 

  23. Nishimoto N (2010) Interleukin-6 as a therapeutic target in candidate inflammatory diseases. Clin Pharmacol Ther 87:483–487

    Article  PubMed  CAS  Google Scholar 

  24. Ryu YH, Baik JE, Yang JS, Kang SS, Im J, Yun CH, Kim DW, Lee K, Chung DK, Ju HR, Han SH (2009) Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol 9:127–133

    Article  PubMed  CAS  Google Scholar 

  25. Shimosato T, Tohno M, Kitazawa H, Katoh S, Watanabe K, Kawai Y, Aso H, Yamaguchi T, Saito T (2005) Toll-like receptor 9 is expressed on follicle-associated epithelia containing M cells in swine Peyer’s patches. Immunol Lett 98:83–89

    Article  PubMed  CAS  Google Scholar 

  26. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  PubMed  CAS  Google Scholar 

  27. Tamauchi H, Yoshida Y, Sato T, Hachimura S, Inoue M, Kaminogawa S, Habu S (2005) Oral antigen induces antigen-specific activation of intraepithelial CD4+ lymphocytes but suppresses their activation in spleen. Immunobiology 210:709–721

    Article  PubMed  CAS  Google Scholar 

  28. Tohno M, Shimosato T, Kitazawa H, Katoh S, Iliev ID, Kimura T, Kawai Y, Watanabe K, Aso H, Yamaguchi T, Saito T (2005) Toll-like receptor 2 is expressed on the intestinal M cells in swine. Biochem Biophys Res Commun 330:547–554

    Article  PubMed  CAS  Google Scholar 

  29. Tohno M et al (2006) Toll-like receptor 2 and 9 are expressed and functional in gut-associated lymphoid tissues of presuckling newborn swine. Vet Res 37(6):791–812

    Article  PubMed  CAS  Google Scholar 

  30. Tsuji M, Suzuki K, Kinoshita K, Fagarasan S (2008) Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Semin Immunol 20:59–66

    Article  PubMed  CAS  Google Scholar 

  31. Vega-Lopez MA, Arenas-Contreras G, Bailey M, Gonzalez-Pozos S, Stokes CR, Ortega MG, Mondragon-Flores R (2001) Development of intraepithelial cells in the porcine small intestine. Dev Immunol 8:147–158

    Article  PubMed  CAS  Google Scholar 

  32. Walsh MC, Gardiner GE, Hart OM, Lawlor PG, Daly M, Lynch B, Richert BT, Radcliffe S, Giblin L, Hill C, Fitzgerald GF, Stanton C, Ross P (2008) Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiol Ecol 64:317–327

    Article  PubMed  CAS  Google Scholar 

  33. Wen K, Azevedo MS, Gonzalez A, Zhang W, Saif LJ, Li G, Yousef A, Yuan L (2009) Toll-like receptor and innate cytokine responses induced by lactobacilli colonization and human rotavirus infection in gnotobiotic pigs. Vet Immunol Immunopathol 127:304–315

    Article  PubMed  CAS  Google Scholar 

  34. Yu QH, Dong SM, Zhu WY, Yang Q (2007) Use of green fluorescent protein to monitor Lactobacillus in the gastro-intestinal tract of chicken. FEMS Microbiol Lett 275:207–213

    Article  PubMed  CAS  Google Scholar 

  35. Zeuthen LH, Fink LN, Frokiaer H (2008) Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gut-derived lactobacilli and bifidobacteria in dendritic cells. Immunology 124:489–502

    Article  PubMed  CAS  Google Scholar 

  36. Zhang X, Yang Q (2007) Effect of compound mucosal immune adjuvant on mucosal and systemic immune responses in chicken orally vaccinated with attenuated Newcastle-disease vaccine. Vaccine 25:3254–3262

    Article  PubMed  CAS  Google Scholar 

  37. Zhang JH, Jundeng D, Li Y, Yang Q (2011) The effect of Lactobacillus on the expression of porcine β-defensin-2 in the digestive tract of piglets. Livestock Science. http://dx.doi.org/10.1016/j.livsci.2011.01.001

Download references

Acknowledgments

This study was supported by grants (30871858) and (30800791) from the National Science Grant of China and a grant (BE200830155) from the Support Program of Jiangsu province, as well as helps by and Liuhe Breeding Base, Jiangsu Province Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Deng, J., Wang, Z. et al. Modulatory Effects of Lactobacillus salivarius on Intestinal Mucosal Immunity of Piglets. Curr Microbiol 62, 1623–1631 (2011). https://doi.org/10.1007/s00284-011-9906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9906-4

Keywords

Navigation