Skip to main content
Log in

Reliability of CARD-FISH Procedure for Enumeration of Archaea in Deep-Sea Surficial Sediments

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The enumeration of Archaea in deep-sea sediment samples is still limited, although different methodological procedures have been applied. Among these, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) technique is a promising tool for estimation of archaeal abundance in deep-sea sediment samples. Comparing different permeabilisation treatments, the best results obtained both on archaeal pure cultures and on natural assemblages were with hydrochloric acid (0.1 M) and proteinase K (0.004 U/ml) treatments. The application of CARD-FISH on deep-sea sediments revealed that Archaea reach up to 41% of total prokaryotic cells. Specific probes for planktonic Archaea showed that marine Crenarchaea dominated archaeal seafloor communities. No clear bathymetric trends were observed for archaeal abundances and the morphology of continental margin (slope vs. canyon) seems not to have a direct influence on archaeal relative abundances. The site-specific sediment habitat—both abiotic environmental setting and sedimentary organic matter quality—explain up to 65% of variance of archaeal, crenarchaeal and euryarchaeal relative abundance, suggesting a wide ecophysiological adaptation to deep-sea benthic ecosystems. The findings demonstrate that Archaea are an important component of benthic microbial assemblages so far neglected, and hence they lay the groundwork for more focused research on their ecological importance in the functioning of deep-sea benthic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5585–5689

    Article  Google Scholar 

  2. Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    Article  PubMed  CAS  Google Scholar 

  3. Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Article  PubMed  CAS  Google Scholar 

  4. Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  PubMed  CAS  Google Scholar 

  5. Molin S, Givskov M (1999) Application of molecular tools for in situ monitoring of bacterial growth activity. Environ Microbiol 1:383–391

    Article  PubMed  CAS  Google Scholar 

  6. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep subseafloor biosphere identified as living bacteria. Nature 433:861–864

    Article  PubMed  CAS  Google Scholar 

  7. Bouvier T, del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Article  PubMed  CAS  Google Scholar 

  8. Ravenschlag K, Sahm K, Amann R (2001) Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl Environ Microbiol 67:387–395

    Article  PubMed  CAS  Google Scholar 

  9. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalysed reporter deposition for the identification of marine Bacteria. Appl Environ Microbiol 68:3094–3101

    Article  PubMed  CAS  Google Scholar 

  10. Kirchman D, Elifantz LH, Dittel AI, Malmstrom RR, Cottrell MT (2007) Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol Oceanogr 52:495–507

    Article  CAS  Google Scholar 

  11. Tamburini C, Garel M, Al Ali B, Mèrigot B, Kriwy P, Charrière B, Budillon G (2008) Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrenian Sea. Deep-Sea Rea Part II 56:700–712

    Article  Google Scholar 

  12. Teira E, Lebaron P, Aken HMV, Veth C, Herndl GJ (2006) Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol Oceanogr 51:2131–2144

    Article  CAS  Google Scholar 

  13. Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ (2004) Combining catalysed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization utilization by Bacteria and Archaea in the deep ocean. Appl Environ Microbiol 70:4411–4414

    Article  PubMed  CAS  Google Scholar 

  14. Varela M, van Aken H, Sintes E, Herndl GJ (2008) Latitudinal trends of Crenarchaeota and Bacteria in the meso- and bathypelagic waters of the eastern north Atlantic. Environ Microbiol 10:110–124

    Article  PubMed  CAS  Google Scholar 

  15. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  16. Schönhuber W, Fuchs B, Juretschko S, Amann R (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labelled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63:3268–3273

    PubMed  Google Scholar 

  17. Ishii K, Mußmann M, MacGregor BJ, Amann R (2004) An improved fluorescence in situ hybridization protocol for the identification of Bacteria and Archaea in marine sediment. FEMS Microbiol Ecol 50:203–212

    Article  PubMed  CAS  Google Scholar 

  18. Amann RI, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature 6:339–348

    CAS  Google Scholar 

  19. Kubota K, Imachi H, Kawakami S, Nakamura K, Harada H, Ohashi A (2008) Evaluation of enzymatic cell treatment for application of CARD-FISH to methanogens. J Microbiol Meth 72:54–59

    Article  CAS  Google Scholar 

  20. Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928–2935

    Article  PubMed  CAS  Google Scholar 

  21. Pusceddu A, Bianchelli S, Canals M, Sanchez-Vidal A, Durrieu De Madron X, Heussner S, Lykousis V, de Stigter H, Trincardi F, Danovaro R (2010) Organic matter in sediments of canyons and open slope of the Portuguese, Catalan, Southern Adriatic and Cretan Sea margins. Deep-Sea Res Part I 57:441–457

    Article  CAS  Google Scholar 

  22. Flach E, Muthumbi A, Heip C (2002) Meiofauna and macrofauna community structures in relation to sediment composition at the Iberian margin compared to the Goban Spur (NE Atlantic). Prog Oceanogr 52:433–457

    Article  Google Scholar 

  23. Lastras G, Arzola RG, Masson DG, Wynn RB, Huvenne VAI, Hühnerbach V, Canals M (2009) Geomorphology and sedimentary features in the Central Portuguese submarine canyons, Western Iberian margin. Geomorphology 103:310–329

    Article  Google Scholar 

  24. Manini E, Luna GM (2003) Influence of the mineralogical composition on microbial activities in marine sediments: an experimental approach. Chem Ecol 19:399–410

    Article  CAS  Google Scholar 

  25. Pernthaler A, Pernthaler J, Amann R (2004) Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms. In: Kowalchuk G, de Bruiijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 711–726

    Google Scholar 

  26. Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  27. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial population. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  28. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16 s ribosomal-RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    PubMed  CAS  Google Scholar 

  29. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with ribosomal-RNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Article  PubMed  CAS  Google Scholar 

  30. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  31. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  32. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soil of diverse compositions. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

  33. Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs K (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851

    Article  PubMed  CAS  Google Scholar 

  34. Manini E, Luna GM, Corinaldesi C, Zeppilli D, Bortoluzzi G, Caramanna G, Raffa F, Danovaro R (2008) Prokaryote diversity and virus abundance in shallow hydrothermal vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (north Sulawesi-Indonesia). Microb Ecol 55:626–639

    Article  PubMed  CAS  Google Scholar 

  35. Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71:2303–2309

    Article  PubMed  CAS  Google Scholar 

  36. Llobet-Brossa E, Rosellò-Mora R, Amann R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64:2691–2696

    PubMed  Google Scholar 

  37. Sahm K, Berninger UG (1998) Abundance, vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediment (Svalbard, Arctic Ocean). Mar Ecol Prog Ser 165:71–80

    Article  Google Scholar 

  38. Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol Oceanogr 48:1893–1902

    Article  Google Scholar 

  39. Auguet JC, Barberan A, Casamayor OE (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190

    Article  PubMed  Google Scholar 

  40. Durbin AM, Teske A (2010) Sediment-associated microdiversity within the Marine Group I Crenarchaeota. Environ Microbiol Rep 2(5):693–703

    Article  CAS  Google Scholar 

  41. Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66:181–196

    Article  PubMed  CAS  Google Scholar 

  42. Takano Y, Chikaraishi Y, Ogawa NO, Nomaki H, Morono Y, Inagaki F, Kitazato H, Hinrichs KU, Ohkouchi N (2010) Sedimentary membrane lipids recycled by deep-sea benthic Archaea. Nat Geosci 3:858–861

    Article  CAS  Google Scholar 

  43. Teske A, Sørensen KB (2008) Uncultured Archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18

    Article  PubMed  CAS  Google Scholar 

  44. Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384

    PubMed  CAS  Google Scholar 

  45. Zhang W, Saren G, Li T, Yu X, Zhang L (2010) Diversity and community structure of Archaea in deep subsurface sediments from the Tropical Western Pacific. Curr Microbiol 60:439–445

    Article  PubMed  CAS  Google Scholar 

  46. Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R (2002) Comparison of fluorescently labelled oligonucleotide and polynucleotide probes for the detection of pelagic marine Bacteria and Archaea. Appl Environ Microbiol 68:661–667

    Article  PubMed  CAS  Google Scholar 

  47. Baker GC, Smith JJ, Cowan DA (2003) Review and reanalysis of domain-specific 16S primers. J Microbiol Meth 55:541–555

    Article  CAS  Google Scholar 

  48. Alt-Epping U, Mil-Homens M, Hebbeln D, Abrantes F, Schneider RR (2007) Provenance of organic matter and nutrient conditions on a river- and upwelling influenced shelf: a casa study from the Portuguese Margin. Mar Geol 234:169–179

    Article  Google Scholar 

  49. García R, Thomsen L (2008) Bioavailable organic matter in surface sediments of the Nazaré canyon and adjacent slope (Western Iberian Margin). J Mar Syst 71:44–59

    Article  Google Scholar 

  50. Francis CM, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  PubMed  CAS  Google Scholar 

  51. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Sthal DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  52. Ouverney CC, Fuhrman JA (2000) Marine planktonic Archaea take up amino acids. Appl Environ Microbiol 66:4829–4833

    Article  PubMed  CAS  Google Scholar 

  53. Teira E, van Aken H, Veth C, Herndl GJ (2006) Archaeal uptake of enantiomeric amino acids in the meso- and bathypelagic waters of the North Atlantic. Limnol Oceanogr 51:60–69

    Article  CAS  Google Scholar 

  54. Whitman WB, Coleman DC, Wiebe W (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been conducted in the framework of integrated Project HERMES (Hotspot Ecosystem Research on the Margins of European Seas) founded by the European Commission under the Framework Research Program VI (Contract No. GOCE-CT-2005-511234-1). The authors are indebted to the Captain and the crew of the ships Pelagia (The Netherlands) for their expert handling and support during sea going activities. The authors are also grateful to Dr. A. Dell’Anno and Prof. A. Pusceddu for precious comments on an early draft of the manuscript, and Prof. R. Danovaro for promoting and stimulating this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Molari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molari, M., Manini, E. Reliability of CARD-FISH Procedure for Enumeration of Archaea in Deep-Sea Surficial Sediments. Curr Microbiol 64, 242–250 (2012). https://doi.org/10.1007/s00284-011-0056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0056-5

Keywords

Navigation