Skip to main content
Log in

Surface Hydrophobicity of Culture and Water Biofilm of Penicillium spp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fungal surface hydrophobicity is involved in several functions in fungal growth and development. Water contact angles measurement has been used as a direct and simple approach for its characterisation in solid cultures. Microsphere adhesion assay is said to be the best method to assess cell hydrophobicity of filamentous fungi. This study aimed to apply these two methods to study hydrophobicity of Penicillium expansum and Penicillium brevicompactum grown as mycelial mats in solid culture, liquid culture and water biofilms. As result, both species in solid cultures were classified as hydrophobic with contact angles ≥90º, but in liquid cultures and water biofilms showed different levels of hydrophobicity when microsphere adhesion assay was applied. In addition, was found that biofilms have specific hydrophobic hyphae which may be involved in fungal ecological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amiri A, Cholodowski D, Bompeix G (2005) Adhesion and germination of waterborne and airborne conidia of Penicillium expansum to apple and inert surfaces. Physiol Mol Plant Path 67:40–48

    Article  CAS  Google Scholar 

  2. Baschien C, Rode G, Böckelmann U, Götz P, Szewzyk U (2009) Interactions between hyphosphere-associated bacteria and the fungus Cladosporium herbarum on aquatic leaf litter. Microb Ecol 58:642–650

    Article  PubMed  Google Scholar 

  3. Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, Paris S, Mallet A, Prévost M-C, Latgé JP (2007) An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 9:1588–1600

    Article  PubMed  CAS  Google Scholar 

  4. Braganra SM, Azevedo NF, Simoes LC, Keevil CW, Vieira MJ (2007) Use of fluorescent in situ hybridisation for the visualisation of Helicobacter pylori in real drinking water biofilms. Water Sci Technol 55:387–393

    PubMed  CAS  Google Scholar 

  5. Busscher HJ, Van Pelt AWJ, de Boer P, de Jong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloid Surf Physicochem Eng Aspect 9:319–331

    CAS  Google Scholar 

  6. Chandra J, Patel JD, Jian L, Zhou G, Mukherjee PK, McCormick TS, Anderson JM, Ghannoum MA (2005) Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Appl Environ Microbiol 71:8795–8801

    Article  PubMed  CAS  Google Scholar 

  7. Chau HW, Si BC, Goh YK, Vujanovic V (2009) A novel method for identifying hydrophobicity on fungal surfaces. Mycol Res 43:117–126

    Google Scholar 

  8. Chau HW, Goh YK, Si BC, Vujanovic V (2010) Assessment of alcohol percentage test for fungal surface hydrophobicity measurement. Lett Appl Microbiol 50:295–300

    Article  PubMed  CAS  Google Scholar 

  9. de Boer W, Klein PJA, Kowalchuk GA, Van Veen JA (2001) Growth of chitinolytic dune soil β-subclass proteobacteria in response to invading fungal hyphae. Appl Environ Microbiol 67:3358–3362

    Article  PubMed  Google Scholar 

  10. de Boer WJH, Leveau J, Kowalchuk GA, Klein PJA, Abeln ECA, Figge MJ, Sjollema K, Janse JD, van Veen JA (2004) Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int J Syst Evol Microbiol 54:857–864

    Article  PubMed  Google Scholar 

  11. de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  12. Donlan R, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  13. Doyle R, Rosenberg M (1990) Microbial cell surface hydrophobicity: history, measurement, and significance. In: Doyle R, Rosenberg M (eds) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington, pp 1–37

    Google Scholar 

  14. Doyle RJ (2000) Contribution of the hydrophobic effect to microbial infection. Microb Infect 2:391–400

    Article  CAS  Google Scholar 

  15. Elvers KT, Leeming K, Lappin-Scott HM (2002) Binary and mixed population biofilms: time-lapse image analysis and disinfection with biocides. J Ind Microbiol Biotechnol 29:331–338

    Article  PubMed  CAS  Google Scholar 

  16. Epstein AK, Pokroy B, Seminara A, Aizenberg J (2011) Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. PNAS 108:995–1000

    Article  PubMed  CAS  Google Scholar 

  17. Gonçalves AB, Paterson RRM, Lima N (2006) Survey and significance of filamentous fungi from tap water. Int J Hyg Environ Health 209:257–264

    Article  PubMed  Google Scholar 

  18. Hageskal G, Lima N, Skaar I (2009) The study of fungi in drinking water. Mycol Res 113:165–172

    Article  PubMed  Google Scholar 

  19. Hazen KC (1990) Cell surface hydrophobicity of medically important fungi especially Candida species. In: Doyle R, Rosenberg M (eds) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington, pp 249–295

    Google Scholar 

  20. Hazen KC, Hazen BW (1987) A polystyrene microsphere assay for detecting surface hydrophobicity variations within Candida albicans populations. J Immunol Methods 6:289–299

    CAS  Google Scholar 

  21. Henriques M, Azeredo J, Oliveira R (2004) Adhesion of Candida albicans and Candida dubliniensis to acrylic and hydroxyapatite. Colloids Surf B 33:235–241

    Article  CAS  Google Scholar 

  22. Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Article  PubMed  CAS  Google Scholar 

  23. Hogan DA, Wargo MJ, Beck N (2007) Bacterial biofilms on fungal surfaces. In: Kjellebergue S, Giviskov M (eds) The biofilm mode of life. Horizons Biosciences, Wymondham

    Google Scholar 

  24. Howard FJ, Douglas LJ (2002) Interactions between Candida species and bacteria in mixed infections. In: Brogden KA, Guthmiller JM (eds) Polymicrobial diseases. ASM Press, Washington

    Google Scholar 

  25. Li F, Palecek SP (2008) Distinct domains of the Candida albicans adhesin Eap1p mediate cell–cell and cell-substrate interactions. Microbiology 154:1193–1203

    Article  PubMed  CAS  Google Scholar 

  26. Linder MB, Szilvay GR, Nakari-Setälä T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  PubMed  CAS  Google Scholar 

  27. Mazumder S, Falkinham JO III, Dietrich AM, Puri IK (2010) Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation. Biofouling 26:333–339

    Article  PubMed  Google Scholar 

  28. Morales DK, Hogan DA (2010) Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathogens. doi:10.1371/journal.ppat.1000886

  29. Pascual S, de Cal A, Magan N, Melgarejo P (2000) Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. J Appl Microbiol 89:847–853

    Article  PubMed  CAS  Google Scholar 

  30. Paterson RRM, Lima N (2005) Fungal contamination of drinking water. In: Lehr J, Keeley J, Lehr J, Kingery TB III (eds) Water encyclopedia. Wiley, Inc., Hoboken

    Google Scholar 

  31. Sammon NB, Harrower KM, Fabbro LD, Reed RH (2011) Three potential sources of microfungi in a treated municipal water supply system in sub-tropical Australia. Int J Environ Res Public Health 8:713–732

    Article  PubMed  Google Scholar 

  32. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT Food Sci Technol 43:573–583

    Article  Google Scholar 

  33. Siqueira VM, Lima N (2011) Efficacy of free chlorine against water biofilms and spores of Penicillium brevicompactum. In: Ulrich Borchers, Clive Thompson K (ed) Water contamination emergencies: monitoring, understanding and acting. RSC Publishing, Cambridge, pp 157–165

  34. Siqueira VM, Oliveira HMB, Santos C, Paterson RRM, Gusmão NB, Lima N (2011) Filamentous fungi in drinking water, particularly in relation to biofilm formation. Int J Environ Res Public Health 8:456–469

    Article  PubMed  CAS  Google Scholar 

  35. Smits THM, Wick L, Harms H, Keel C (2003) Characterization of the surface hydrophobicity of filamentous fungi. Environ Microbiol 5:85–91

    Article  PubMed  Google Scholar 

  36. Valdivia RH, Heitman J (2007) Endosymbiosis: the evil within. Curr Biol 17:408–410

    Article  Google Scholar 

  37. Villena GK, Fujikawa T, Tsuyumu S, Gutiérrez-Correa M (2009) Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy. Bioresource Technol 101:1920–1926

    Article  Google Scholar 

  38. Watson CL, Owen RJ, Said B, Lai S, Lee JV, Surman-Lee S, Nichols G (2004) Detection of Helicobacter pylori by PCR but not culture in water and biofilm samples from drinking water distribution systems in England. J Appl Microbiol 97:690–698

    Article  PubMed  CAS  Google Scholar 

  39. Wessels JGH, de Vries OMH, Asgeirsdottir SA, Schuren FHJ (1991) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793–799

    Article  PubMed  CAS  Google Scholar 

  40. Wessels JGH (1997) Hydrophobins, proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45

    Article  PubMed  CAS  Google Scholar 

  41. Whiteford JR, Spanu PD (2002) Hydrophobins and the interactions between fungi and plants. Mol Plant Path 3:391–400

    Article  CAS  Google Scholar 

  42. Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    Article  PubMed  CAS  Google Scholar 

  43. Wingender J, Flemming H-C (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Environ Res Public Health. doi:10.1016/j.ijheh.2011.05.009

  44. Wösten HAB, Schuren FHJ, Wessels JGH (1994) Interfacial self-assembly of a hydrophobin into an amphipathic membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848–5854

    PubMed  Google Scholar 

  45. Wösten HAB, Willey JM (2000) Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146:767–773

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siqueira, V., Lima, N. Surface Hydrophobicity of Culture and Water Biofilm of Penicillium spp.. Curr Microbiol 64, 93–99 (2012). https://doi.org/10.1007/s00284-011-0037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0037-8

Keywords

Navigation