Skip to main content
Log in

Lactose-Enhanced Cellulase Production by Microbacterium sp. Isolated from Fecal Matter of Zebra (Equus zebra)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A cellulase-producing bacterial strain designated Z5 was isolated from the fecal matter of Zebra (Equus zebra). The strain was identified as Microbacterium sp. on the basis of 16S rDNA sequence analysis. The effect of substrates like CMC, avicel, starch, maltose, sucrose, glucose, fructose, galactose, and lactose on cellulase production was also determined. Lactose as the sole carbon source induced cellulase production in this bacterial strain and a positive synergistic effect of lactose and CMC was also observed with enhancement of 3–4 times in cellulase activity. The optimum cellulase production was recorded with 3% CMC and 1% lactose when added individually in the Omeliansky’s medium. The optimum temperature and time for cellulase production by this bacterial strain was 37°C and 10 days, respectively. To our knowledge this is the first report on enhancement of cellulase production by lactose in the Microbacterium sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker W, Panow A (1991) Estimation of cellulase activity using glucose-oxidase-Cu (II) reducing assay for glucose. J Biochem Biophys Methods 23:265–271

    Article  PubMed  CAS  Google Scholar 

  2. Carle-Urioste JC, Escobar-Vera J, EI-Gogary S, Henrique-Silva F, Torigoi E, Crivellaro O, Herrera-Estrella A, EI-Dorry H (1997) Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem 272:10169–10174

    Article  PubMed  CAS  Google Scholar 

  3. Cherry JR, Fidanstef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  PubMed  CAS  Google Scholar 

  4. Costa RB, Silva MVA, Freitas FC, Leitão VSF, Lacerda PSB, Ferrara MA, Bon EPS (2008) Mercado e Perspectivas de Uso de Enzimas Industriais e Especiais no Brasil. In: Bon EPS, Ferrara MA, Corvo ML, Vermelho AB, Paiva CLA, Alencastro RB, Coelho RRR (org) Enzimas em Biotecnologia, Produção, Aplicações e Mercados, 1st edn. Interciência, Rio de Janeiro, pp 463–488

  5. George SP, Ahmed A, Rao MB (2001) Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresour Technol 77:171–175

    Article  PubMed  CAS  Google Scholar 

  6. Ghosh TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  Google Scholar 

  7. Harchand RK, Singh S (1997) Characterization of cellulase complex of Streptomyces albaduncus. J Basic Microbiol 37(2):93–103

    Article  PubMed  CAS  Google Scholar 

  8. Ilmen M, Saloheimo A, Onnela ML, Penttila ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63:1296–1306

    Google Scholar 

  9. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mmmalian Protein Metabolism, vol 3. Academic Press, New York, pp 21–132

    Google Scholar 

  10. Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B (2006) Dgalactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology 152:1507–1514

    Article  PubMed  CAS  Google Scholar 

  11. Kinnear PR, Gray CD (2000) SPSS for Windows made simple. Release10. Psychology Press, Sussex

    Google Scholar 

  12. Kluepfel D, Shareck F, Mondau F, Morosoli R (1986) Characterization of cellulase and xylanase activities of Streptomyces lividans. Appl Microbiol Biotechnol 24:230–234

    Article  CAS  Google Scholar 

  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  14. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. J Analyt Chem 31:426–428

    Article  CAS  Google Scholar 

  15. Miranda M, Kam Tin L, Wensheng Q (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    Google Scholar 

  16. Moreira AR, Philips JA, Humphrey AE (1981) Production of cellulases by Thermomonospora sp. Biotechnol Bioeng 23:1339–1347

    Article  CAS  Google Scholar 

  17. Omeliansky W (1902) Ueber die Garung der cellulose. Centrabl Bakt II Abt 8:225–231

    Google Scholar 

  18. Pandey KK, Mayilraj S, Chakrabarti T (2002) Pseudomonas indica sp. nov., a novel butane utilizing species. Int J Syst Evol Microbiol 52:1559–1567

    Article  PubMed  CAS  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  20. Schrempf H, Walter S (1995) The cellulolytic system of Streptomyces reticuli. Int J Biol Macromol 17(6):353–355

    Article  PubMed  CAS  Google Scholar 

  21. Seiboth B, Hofmann G, Kubicek CP (2002) Lactose metabolism and cellulase production in Hypocrea jecorina: the gal 7 gene, encoding galactose-1-phosphate uridylyltransferase, is essential for growth on galactose but not for cellulase induction. Mol Genet Genomics 267:124–132

    Article  PubMed  CAS  Google Scholar 

  22. Semedo LT, Gomes RC, Bon EP, Soares RM, Linhares LF, Coelho RR (2000) Endocellulase and exocellulase activities of two Streptomyces strains isolated from a forest soil. Appl Biochem Biotechnol 84:267–276

    Article  PubMed  Google Scholar 

  23. Shivaji S, Rao NS, Saisree L, Reddy GSN, Seshu Kumar G, Bhargava PM (1989) Isolates of Arthobacter from the soils of Schirmacher Oasis, Antarctica. Polar Biol 10:225–229

    Article  Google Scholar 

  24. Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  25. Stewart CS, Funt HJ, Bryant MP (1997) The rumen microbial ecosystem. Blackie Academic and Professional publishers, London

    Google Scholar 

  26. Suresh K, Mayilraj S, Chakrabarti T (2006) Effluviibacter roseus gen. nov. sp. nov., isolated from muddy water, belonging to the family ‘Flexibacteraceae. Int J Syst Evol Microbiol 56:1703–1707

    Article  PubMed  CAS  Google Scholar 

  27. Suto M, Tomita F (2001) Induction and catabolite repression mechanisms of cellulase in fungi. J Biosci Bioeng 92:305–311

    Article  PubMed  CAS  Google Scholar 

  28. Teather RM, Wood PJ (1982) Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    PubMed  CAS  Google Scholar 

  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  30. Tuncer M, Kuru A, Isikli M, Sahin N, Celenk FG (2004) Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp F2621 isolated in 17.Turkey. J Appl Microbiol 97(4):783–791

    Article  PubMed  CAS  Google Scholar 

  31. Van de Peer Y, Wachter RD (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230

    PubMed  Google Scholar 

  32. Zar JH (1999) Biostatistical analysis, 4th edn. Pearson education (Singapore) Pvt. Ltd, New Delhi, p 663

    Google Scholar 

Download references

Acknowledgment

Financial support for the first author provided by University Grant Commission through Burdwan University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadhu, S., Saha, P., Mayilraj, S. et al. Lactose-Enhanced Cellulase Production by Microbacterium sp. Isolated from Fecal Matter of Zebra (Equus zebra). Curr Microbiol 62, 1050–1055 (2011). https://doi.org/10.1007/s00284-010-9816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9816-x

Keywords

Navigation