Skip to main content
Log in

Isolation and Identification of a Pathogen of Silkworm Bombyx mori

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A pathogenic bacterial strain, ST-1, was isolated from a naturally infected silkworm. The strain was identified on the basis of its physiological and biochemical properties and the results of sequence analysis of its 16S rRNA gene. The results of the 16S rRNA gene sequence analysis revealed that ST-1 shared the highest sequence identity (more than 99%) with Pseudomonas chlororaphis subsp. aurantiaca. ST-1 bacteria were gram-negative and 0.7–0.9 × 1.3–1.5 μm long, short rods with rounded ends. The strain could utilize sodium citrate, malonate, d-glucose, sucrose, d-fructose, d-mannose, and l-arabinose. Pathogenicity of ST-1 for silkworm could be depicted as a linear regression of the logarithm (y) of ST-1 concentration against probability (x) (y = 0.4040 + 0.0600x). The median lethal concentration (LC50) was 2.12 × 104 cfu/ml. In conclusion, ST-1 was identified as Ps. chlororaphis subsp. aurantiaca. This is the first report that Ps. aurantiaca is a pathogen for silkworm Bombyx mori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aruga H (1994) Principles of sericulture. CRC Press, Rotterdam, pp 209–212

    Google Scholar 

  2. Lu YL, FAO (1991) Silkworm diseases (FAO Agricultural Services Bulletin) (Paperback). Food and Agriculture Organization, Rome, pp 27–35

    Google Scholar 

  3. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  4. Barrow GI, Feltham RKA (2004) Cowan And Steel’s manual for the identification of medical bacteria. Cambridge University Press, Cambridge, UK

    Google Scholar 

  5. Standardization Administration of the People’s Republic of China (2003) GB/T 4789.28-2003 microbiological examination of food hygiene-Staining methods culture mediums and reagents. China Standard Press, Beijing

    Google Scholar 

  6. Liu S, Zhu W, Yang Z et al (1995) Isolation and identification of a pathogen of grasshoppers. Acta Microbiol Sin 35:86–89

    CAS  Google Scholar 

  7. Claus D (1992) A standardized Gram staining procedure. World J Microbiol Biotechnol 8:451–452

    Article  Google Scholar 

  8. Holt JG, Krieg NR, Sneath PHA et al (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  9. Ellington A (1998) Preparation and analysis of DNA. In: Ausubel FM, Brent R, Kingston RE (eds) Short protocols in molecular biology. China Scientific Press, Beijing, pp 29–71

    Google Scholar 

  10. Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study [J]. J Bacteriol 173(2):697–703

    PubMed  CAS  Google Scholar 

  11. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  12. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  13. Standardization Administration of the People’s Republic of China (2008) GB/T 4789.2-2008 microbiological examination of food hygiene-Aerobic plate count. China Standard Press, Beijing

    Google Scholar 

  14. Jia CS (2006) Calculating the LC50 of insecticides with software SPSS. Chin Bull Entomol 43(3):414–417 (in Chinese with English abstract)

    CAS  Google Scholar 

  15. Palleroni NJ (1984) Family I. Pseudomonadaceae Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1917, 555. In: Sneath PHA, Mair NS, Sharpe ME (eds) Bergey’s manual of systematic bacteriology, 1st edn. Williams & Wilkins, Baltimore, pp 141–218

    Google Scholar 

  16. Peix A, Valverde A, Rivas R et al (2007) Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57:1286–1290

    Article  PubMed  CAS  Google Scholar 

  17. Fry NK, Warwick S, Saunders NA et al (1991) The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae. J Gen Microbiol 137:1215–1222

    PubMed  CAS  Google Scholar 

  18. Devereux R, He SH, Doyle CL et al (1990) Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172(7):3609–3619

    PubMed  CAS  Google Scholar 

  19. Anzai Y, Kim H, Park JY et al (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    PubMed  CAS  Google Scholar 

  20. Johnson JL, Palleroni N (1989) Deoxyribonucleic acid similarities among Pseudomonas species. Int J Syst Bacteriol 39:230–235

    Article  Google Scholar 

  21. Palleroni NJ (2005) Genus I. Pseudomonas. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, East Lansing, pp 323–379

    Google Scholar 

  22. Li H, Liu XG, Gao KX et al (2009) Cloning of phzIR from the endophytic Pseudomonas sp. G5 and its expression in Escherichia coli. Chin J Biotech 25(6):832–839

    CAS  Google Scholar 

  23. Lennart J, Margareta H, Berndt G (1998) Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Eur J Plant Pathol 104:701–711

    Article  Google Scholar 

  24. Schmidt-Eisenlohr H, Rittig HM, Baron C (2001) Biomonitoring of pJP4-carrying Pseudomonas chlororaphis with Trb protein-specific antisera. Environ Microbiol 3:720–730

    Article  PubMed  CAS  Google Scholar 

  25. Pierson LS III, Pierson EA (1996) Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett 136:101–108

    Article  CAS  Google Scholar 

  26. Timothy P, Brian NT, Pascale G et al (2000) A novel antifungal furanone from Pseudomonas aureofaciens, a biocontrol agent of fungal plant pathogens. J Chem Ecol 26(6):1515–1524

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by funds earmarked for the Modern Agro-industry Technology Research System of China. We are grateful to all who provided us with the means to access the free software we used in this study and have cited in this article. We thank all partners and laboratory members for their help and critiques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yuan Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, HP., Shen, ZY., Zhu, F. et al. Isolation and Identification of a Pathogen of Silkworm Bombyx mori . Curr Microbiol 62, 876–883 (2011). https://doi.org/10.1007/s00284-010-9796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9796-x

Keywords

Navigation