Skip to main content

Advertisement

Log in

Wolbachia in Anastrepha Fruit Flies (Diptera: Tephritidae)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and cause a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing, and host feminization. In this study, we used three sets of Wolbachia-specific primers (16S rDNA, ftsZ, and wsp) in conjunction with the polymerase chain reaction (PCR), cloning and sequencing to study the infection of fruit flies (Anastrepha spp. and Ceratitis capitata) by Wolbachia. The flies were collected at several localities in Brazil and at Guayaquil, Ecuador. All of the fruit flies studied were infected with Wolbachia supergroup A, in agreement with the high prevalence of this group in South America. Phylogenetic analysis showed that the wsp gene was the most sensitive gene for studying the relationships among Wolbachia strains. The Wolbachia sequences detected in these fruit flies were similar to those such as wMel reported for other fruit flies. These results show that the infection of Anastrepha fruit flies by Wolbachia is much more widespread than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aluja M (1994) Bionomics and management of Anastrepha. Annu Rev Entomol 39:155–178

    Article  Google Scholar 

  2. Arakaki N, Miyoshi T, Noda H (2001) Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc R Soc Lond B Biol Sci 268:1011–1016

    Article  CAS  Google Scholar 

  3. Armbruster P, Damsky WE, Giordano R, Birungi J, Munstermann L, Conn JE (2003) Infection of new- and old-world Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA. Evolution 40:356–360

    Google Scholar 

  4. Bandi C, Anderson TJC, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B Biol Sci 265:2407–2413

    Article  CAS  Google Scholar 

  5. Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21:1981–1991

    Article  PubMed  CAS  Google Scholar 

  6. Bouchon D, Rigault T, Juchault P (1998) Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc R Soc Lond B Biol Sci 265:1081–1090

    Article  CAS  Google Scholar 

  7. Bourtzis K, O’Neill SL (1998) Wolbachia infections and arthropod reproduction. Bioscience 48(4):287–293

    Article  Google Scholar 

  8. Braig HR, Zhou W, Dobson S, O’Neil SL (1998) Cloning and characterization of the gene encoding the major surface protein of the bacterial endosymbiont Wolbachia. J Bacteriol 180:2373–2378

    PubMed  CAS  Google Scholar 

  9. Breeuwer JAJ (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79:41–47

    Article  Google Scholar 

  10. Breeuwer JAJ, Jacobs G (1996) Wolbachia, intracellular manipulators of mite reproduction. Exp Appl Acarol 20:421–434

    Article  PubMed  CAS  Google Scholar 

  11. Erickson J, Acton AB (1969) Spermatocyte granules in Drosophila melanogaster. Can J Genet Cytol 11:153–168

    PubMed  CAS  Google Scholar 

  12. Fialho RF, Stevens L (2000) Male-killing Wolbachia in a flour beetle. Proc R Soc Lond B Biol Sci 267:1469–1474

    Article  CAS  Google Scholar 

  13. Hertig M (1936) The rickettsia, Wolbachia pipientis and associated inclusions of the mosquito Culex pipiens. Parasitology 28:453–486

    Article  Google Scholar 

  14. Hertig M, Wolbach SB (1924) Studies on rickettsia-like microorganisms in insects. J Med Res 44:29–374

    Google Scholar 

  15. Hoffmann AA, Turelli M (1997) Cytoplasmic incompatibility in insects. In: O’Neill SL, Hoffman AA, Werren JH (eds) Influential passengers, inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 42–80

    Google Scholar 

  16. Hurst GDD, Jiggins FM, von der Schulenburg JHG, Bertrand D, West SA, Goriacheva II, Zakharov IA, Werren JH, Sthoutamer R, Majerus MEN (1999) Male-killing Wolbachia in two species of insect. Proc R Soc Lond B Biol Sci 266:735–740

    Article  Google Scholar 

  17. Hurst GDD, Johnson AP, von der Schulenburg JHG, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156:699–709

    PubMed  CAS  Google Scholar 

  18. James AC, Dean MD, McMahon ME, Ballard JWO (2002) Dynamics of double and single Wolbachia infections in Drosophila simulans from New Caledonia. Heredity 88:182–189

    Article  PubMed  CAS  Google Scholar 

  19. Jamnongluk W, Kittayapong P, Baimai V, O’Neill SL (2002) Wolbachia infections of tephritid fruit flies: molecular evidence for five distinct strains in a single host species. Curr Microbiol 45:255–260

    Article  PubMed  CAS  Google Scholar 

  20. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol Biol 9:393–405

    Article  PubMed  CAS  Google Scholar 

  21. Johanowicz DL, Hoy MA (1998) The manipulation of arthropod reproduction by Wolbachia endosymbionts. Fla Entomol 81:310–317

    Article  Google Scholar 

  22. Jowett T (1998) Preparation of nucleic acids. In: Roberts DB (ed) Drosophila: a practical approach, 2nd edn. Oxford University Press, Oxford, pp 347–372 389 p

    Google Scholar 

  23. King RC, Mills RP (1962) Oogenesis in adult Drosophila melanogaster. XI. Studies of some organelles of the nutrient stream in egg chambers of D. melanogaster and D. willistoni. Growth 21:235–253

    Google Scholar 

  24. Kittayapong P, Milne JH, Tigvattananont S, Baimai V (2000) Distribution of the reproduction-modifying bacteria, Wolbachia, in natural populations of tephritid fruit fly hosts in Thailand. Sci Asia 26:93–103

    Article  Google Scholar 

  25. Kyei-Poku GK, Colwell DD, Coghlin P, Benkel B, Floate KD (2005) On the obiquity and phylogeny of Wolbachia in lice. Mol Ecol 14:285–294

    Article  PubMed  CAS  Google Scholar 

  26. Laven H (1967) Speciation and evolution in Culex pipiens. In: Wright JW, Pal R (eds) Genetics of insect vectors of diseases. Elsevier, Amsterdam, pp 277–311

    Google Scholar 

  27. Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Available at: http://en.bio-soft.net/format/GeneDoc.html

  28. Oh HW, Kim MG, Shin SW, Bae KS, Park H (2000) Ultrastructural and molecular identification of a Wolbachia endosymbiont in a spider, Nephila clavata. Insect Mol Biol 9:539–543

    Article  PubMed  CAS  Google Scholar 

  29. Peacock WJ, Erickson J (1964) An indicator of polarity in the spermatocyte? Drosoph Inf Serv 39:107–108

    Google Scholar 

  30. Riegler M, Stauffer C (2002) Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol Ecol 11:2425–2434

    Article  PubMed  CAS  Google Scholar 

  31. Rocha LS, Mascarenhas RO, Perondini ALP, Selivon D (2005) Occurrence of Wolbachia in Brazilian samples of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Neotrop Entomol 34(6):1013–1015

    Article  CAS  Google Scholar 

  32. Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond B Biol Sci 250:91–98

    Article  CAS  Google Scholar 

  33. Selivon D, Morgante JS, Ribeiro AF, Perondini ALP (1996) Extrusion of masses of yolk during embryonary development of the fruit fly Anastrepha fraterculus. Invertebr Reprod Dev 29:1–7

    Google Scholar 

  34. Selivon D, Perondini ALP, Morgante JS (2005) A genetic-morphological characterization of two cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae). Ann Entomol Soc Am 98:367–381

    Article  CAS  Google Scholar 

  35. Selivon D, Perondini ALP, Ribeiro AF, Marino CL, Lima MMA, Coscrato VE (2002) Wolbachia endosymbiont in a species of the Anastrepha fraterculus complex (Diptera, Tephritidae). Invertebr Reprod Dev 42:121–127

    Google Scholar 

  36. Shoemaker DD, Machado CA, Molbo D, Werren JH, Windsor DM, Herre EA (2002) The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proc R Soc Lond B Biol Sci 269:2257–2267

    Article  Google Scholar 

  37. Stouthamer R (1997) Wolbachia-induced parthenogenesis. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers. Inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 102–124

    Google Scholar 

  38. Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

    Article  PubMed  CAS  Google Scholar 

  39. Szollosi D, Debec A (1980) Presence of rickettsias in haploid Drosophila melanogaster cell lines. Biol Cell 38:129–134

    Google Scholar 

  40. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  42. Turelli M, Hoffmann AA (1995) Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics 140(4):1319–1338

    PubMed  CAS  Google Scholar 

  43. Ullmann SL (1965) Epsilon granules in Drosophila pole cells and oocytes. J Embryol Exp Morphol 13:73–81

    PubMed  CAS  Google Scholar 

  44. van Meer MMM, Witteveldt J, Stouthamer R (1999) Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Mol Biol 8:399–408

    Article  PubMed  Google Scholar 

  45. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  PubMed  CAS  Google Scholar 

  46. Werren JH, Guo LR, Windsor D (1995) Distribution of Wolbachia in neotropical arthropods. Proc R Soc Lond B Biol Sci 262:197–204

    Article  Google Scholar 

  47. Werren JH, Windsor D (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc Lond B Biol Sci 267:1277–1285

    Article  CAS  Google Scholar 

  48. West SA, Cook JM, Werren JH, Godfray HCJ (1998) Wolbachia in two host-parasitoid communities. Mol Ecol 7:1457–1465

    Article  PubMed  CAS  Google Scholar 

  49. Wharton R (1989) Classical biological control of fruit infesting Tephritidae. In: Robinson AS, Hooper G (eds) Fruit flies: their biology, natural enemies, and control. Elsevier, Amsterdam, pp 303–313

    Google Scholar 

  50. White IM, Elson-Harris M (1992) Fruit flies of economic significance: their identification and bionomics, 601 pp. International Institute of Entomology, London

    Google Scholar 

  51. Yanders AF, Brewen JG, Peacock WJ, Goodchild DJ (1968) Meiotic drive and visible polarity in Drosophila spermatocytes. Genetics 59:245–253

    PubMed  CAS  Google Scholar 

  52. Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045

    Article  PubMed  CAS  Google Scholar 

  53. Zhou W, Rousset F, O’Neil SL (1998) Phylogeny and PCR-based classification of Wolbachia strain using wsp gene sequences. Proc R Soc Lond B Biol Sci 265:509–515

    Article  CAS  Google Scholar 

  54. Zucchi RA (2000) Taxonomia. In: Malavasi A, Zucchi RA et al (eds) Moscas-das-frutas de importância econômica no Brasil: conhecimento básico e aplicado. Ribeirão Preto, Holos, pp 13–24

    Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant nos. 03/02693-4 and 03/00069-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia E. Coscrato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coscrato, V.E., Braz, A.S.K., P. Perondini, A.L. et al. Wolbachia in Anastrepha Fruit Flies (Diptera: Tephritidae). Curr Microbiol 59, 295–301 (2009). https://doi.org/10.1007/s00284-009-9433-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9433-8

Keywords

Navigation