Skip to main content
Log in

Microbial Communities in Acid Mine Drainage and Their Interaction with Pyrite Surface

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microbes such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans have been investigated a lot, because of their important role in acid mine drainage (AMD) generation. In this article, the composition of microbial communities in two AMD samples was studied. A culture-independent 16S rDNA-based cloning approach, restriction fragment length polymorphism has been used. The interaction between microbes and natural pyrite specimen surface was researched by scanning electrode microscopy (SEM) and fluorescence in situ hybridization (FISH). The phylogenetic analysis revealed bacteria in these two samples fell into three major groups: Proteobacteria, Nitrospira, and Firmicutes. Archaea was also detected in these two samples. Thermoplasma and Ferroplasma lineages were abundant. From SEM and FISH, a number of A. ferrooxidans, a few cells of Archaea and Acidiphilium were detected adsorbed on the pyrite specimen surface. Leptospirillum sp. (hybridize with the probe LF655) has not been detected to be present on the pyrite specimen surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  3. Bond PL, Druschel GK, Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    Article  PubMed  CAS  Google Scholar 

  4. Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  PubMed  CAS  Google Scholar 

  5. Clinton DC, Richard TW, Charles NA, Robert OR, McCleskey RB (2007) Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochem Trans 8:10–17

    Article  CAS  Google Scholar 

  6. Diaby N, Dold B, Pfeifer HR, Holliger C, Johnson DB, Hallberg K (2007) Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol 9:298–307

    Article  PubMed  CAS  Google Scholar 

  7. Druschel GK, Baker BJ, Gihring T (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 2:13–32

    Article  Google Scholar 

  8. Edwards KJ, Gihring TM, Banfield JF (1999) Seasonal variations in microbial populations and environmental conditions in extreme acid mine environment. Appl Environ Microbiol 65:3627–3632

    PubMed  CAS  Google Scholar 

  9. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    Article  PubMed  CAS  Google Scholar 

  10. Goebel BM, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621

    PubMed  CAS  Google Scholar 

  11. Gonza′lez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69(8):4853–4865

    Article  CAS  Google Scholar 

  12. Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84

    Article  PubMed  CAS  Google Scholar 

  13. Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030

    Article  PubMed  CAS  Google Scholar 

  14. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  PubMed  CAS  Google Scholar 

  15. Johnson DB, Roberto FF (1997) Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes, Springer/Landes Bioscience, Georgetown, TX, pp 259–280

  16. Johnson DB, Rolfe S, Hallberg KB, Iversen E (2001) Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3:630–637

    Article  PubMed  CAS  Google Scholar 

  17. Kevin BH, Kris C, Sakurako K, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72(3):2022–2030

    Article  CAS  Google Scholar 

  18. Kock D, Schippers A (2008) Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl Environ Microbiol 74(16):5211–5219

    Article  PubMed  CAS  Google Scholar 

  19. Kon T, Naoki N, Tairo O (2002) Effects of a squalene epoxidase inhibitor, terbinafine, on ether lipid biosyntheses in a thermoacidophilic archaeon, Thermoplasma acidophilum. J Bacteriol 5:1395–1401

    Article  CAS  Google Scholar 

  20. Leduc LG, Ferroni GD (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Rev 14:103–120

    Article  CAS  Google Scholar 

  21. Mahmouda KK, Leducb LG, Ferroni GD (2005) Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). J Microbiol Methods 61:33–45

    Article  CAS  Google Scholar 

  22. Mangold S, Harneit K, Rohwerder T, Claus G, Sand W (2008) Novel combination of atomic force microscopy and epifluorescence microscopy for visualization of leaching bacteria on pyrite. Appl Environ Microbiol 74(2):410–415

    Article  PubMed  CAS  Google Scholar 

  23. Matthew OK, Schrenk RM, Edwards RJ, Goodman JF, Hamers B (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522

    Article  Google Scholar 

  24. Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee G, Logsdon M (eds) Reviews in Economic Geology, pp 133–160

  25. Porter J, Pickup RW (2000) Nucleic acid-based fluorescent probes in microbial ecology: application of flow cytometry. J Microbiol Methods 42:75–79

    Article  PubMed  CAS  Google Scholar 

  26. Sanhueza A, Ferrer IJ, Vargas T (1999) Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy 51:115–129

    Article  CAS  Google Scholar 

  27. Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, New York, NY, pp 3–33

    Chapter  Google Scholar 

  28. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864

    Article  PubMed  CAS  Google Scholar 

  29. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 205–248

    Google Scholar 

  30. Thurnheer T, Gmur R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56:37–47

    Article  PubMed  CAS  Google Scholar 

  31. Van LMC, Lyklema J, Norde W (1990) Influence of interfaces on microbial activity. Microbial Rev 54(3):75–87

    Google Scholar 

  32. Wang ZH (2006) Study on the interactions between Acidithiobacillus ferrooxidans and sulfide minerals. Master’s Thesis, Central South Univerisity, China

  33. Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    Article  PubMed  CAS  Google Scholar 

  34. Xie XH, He ZG, Xiao SM, Liu JS (2007) Microbial population in acid mine drainage of Tong Shankou Mine, China. J Appl Microbiol 103(4):1227–1238

    Article  PubMed  CAS  Google Scholar 

  35. Xie XH, He ZG, Xiao SM, Liu JS (2007) Microbial diversity of mine water at Zhong Tiaoshan copper mine, China. J Basic Microbiol 47:485–495

    Article  PubMed  CAS  Google Scholar 

  36. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2004CB619204), the Special Fund Project for Authors of National Excellent Ph.D Thesis, China (200549), the National Natural Science Foundation of China (Nos. 50874032, 50374075), the Shanghai Leading Academic Discipline Project (B604), and Shanhai Tongji Gao TingYao Environmental Science & Technology Development Fund. We should also thank Prof. Yuehua Hu, Dr. Zhiguo He, and Dr. Zhaohui Wang for their help to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Xiao, S. & Liu, J. Microbial Communities in Acid Mine Drainage and Their Interaction with Pyrite Surface. Curr Microbiol 59, 71–77 (2009). https://doi.org/10.1007/s00284-009-9394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9394-y

Keywords

Navigation