Skip to main content
Log in

Biodegradation of Methyl tert-Butyl Ether by Enriched Bacterial Culture

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Degradation of methyl tert-butyl ether (MTBE) as a sole carbon and energy source was investigated utilizing an enriched bacterial consortium derived from an old environmental MTBE spill. This enriched culture grew on MTBE with concentration up to 500 mg/l, reducing the MTBE in medium to undetectable concentrations in 23 days. Traces of tert-butyl alcohol were detected during MTBE degradation. The degradation was not affected by additional cobalt ions, whereas low concentration of glucose enhanced the rate of degradation. The bacterial community consisted of numerous bacterial genera, the majority being members of the phylum Acidobacteria and genus Terrimonas. The alkane 1-monooxygenase (alk) gene was detected in this consortium. Our findings suggest that environmental degradation of MTBE proceeds along the previously proposed pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Cho JC, Lee DH, Cho YH et al (1996) Direct extraction of DNA from soil for amplification of 16S rRNA gene sequences by polymerase chain reaction. J Microbiol 34:229–235

    CAS  Google Scholar 

  3. Dong MX, Ma Z, Chang K (2007) MTBE production and technology and market prospect analyse. Petrochem Ind Appl 26:6–9

    Google Scholar 

  4. Francois A, Mathis H, Godefroy D et al (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762

    Article  PubMed  CAS  Google Scholar 

  5. Goodfellow M, Jones AL, Maldonado LA et al (2004) Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycete. Syst Appl Microbiol 27:61–65

    Article  PubMed  CAS  Google Scholar 

  6. Hernandez-Perez G, Fayolle F, Vandecasteele JP (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol 55:117–121

    Article  PubMed  CAS  Google Scholar 

  7. Jensen H, Arvin E (1990) Solubility and degradability of the gasoline additive MTBE, methyl tert-butyl ether and gasoline compounds in water. Contaminated Soil 90:445–448

    Google Scholar 

  8. Kane SR, Chakicherla AY, Chain PS et al (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945

    Article  PubMed  CAS  Google Scholar 

  9. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  10. Lopes Ferreira N, Malandain C, Fayolle-Guichard F (2006) Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 72:252–262

    Article  PubMed  CAS  Google Scholar 

  11. Mo K, Lora CO, Wanken AE et al (1997) Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol 47:69–72

    Article  PubMed  CAS  Google Scholar 

  12. Muller RH, Rohwerder T, Harms H (2008) Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology 154:1414–1421

    Article  PubMed  Google Scholar 

  13. Nadim F, Zack P, Hoag GE et al (2001) United States experience with gasoline additives. Energy Policy 29:1–5

    Article  Google Scholar 

  14. Nakatsu CH, Hristova K, Hanada S et al (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983–989

    Article  PubMed  CAS  Google Scholar 

  15. Quaiser A, Ochsenreiter T, Lanz C et al (2003) Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50:563–575

    Article  PubMed  CAS  Google Scholar 

  16. Rohwerder T, Breuer U, Benndorf D et al (2006) The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72:4128–4135

    Article  PubMed  CAS  Google Scholar 

  17. Salanitro JP, Diaz LA, Williams MP et al (1994) Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl Environ Microbiol 60:2593–2596

    PubMed  CAS  Google Scholar 

  18. Sambrook J, Russell DW (2002) Molecular cloning: a laboratory manual, vol 3. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  19. Skinner KM, Martinez-Prado A, Hyman MR et al (2008) Pathway, inhibition and regulation of methyl tertiary butyl ether oxidation in a filamentous fungus, Graphium sp. Appl Microbiol Biotechnol 77:1359–1365

    Article  PubMed  CAS  Google Scholar 

  20. Smith CA, O’Reilly KT, Hyman MR (2003) Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5 to C8 n-alkanes. Appl Environ Microbiol 69:7385–7394

    Article  PubMed  CAS  Google Scholar 

  21. Squillace PJ, Moran MJ, Lapham WW et al (1999) Volatile organic compounds in untreated ambient groundwater of the United States. Environ Sci Technol 33:4176–4187

    Article  CAS  Google Scholar 

  22. Steffan RJ, McClay K, Vainberg S et al (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

    PubMed  CAS  Google Scholar 

  23. Steffan RJ, Vainberg S, Condee CW (2000) Biotreatment of MTBE with a new bacterial isolate. In: Wickramanayake GB, Gavaskar AR, Alleman BC et al (eds) Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH

    Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  25. United States Environmental Protection Agency (2007) State actions banning MTBE (statewide). EPA420-B-07-013. EPA, Washington, DC

  26. Vainberg S, McClay K, Masuda H et al (2006) Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478. Appl Environ Microbiol 72:5218–5224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Simon Rayner for critical reading of the manuscript, and Dr. Martin M. Larsen for analyzing the medium for cobalt. This work was supported by the National Natural Science Foundation of China (Grant No. 30570038), Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-YW-G-009), and by the European Commission (Project BIOTOOL, Grant No. GOCE-003998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Yan, J., Wang, Q. et al. Biodegradation of Methyl tert-Butyl Ether by Enriched Bacterial Culture. Curr Microbiol 59, 30–34 (2009). https://doi.org/10.1007/s00284-009-9391-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9391-1

Keywords

Navigation