Skip to main content

Advertisement

Log in

Molecular Characterization of Rhodococcus equi from Horse-Breeding Farms by Means of Multiplex PCR for the vap Gene Family

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study evaluated the molecular characteristics of Rhodococcus equi isolates obtained from horses by a multiplex PCR assay that amplifies the vap gene family (vapA, -B, -C, -D, -E, -F, -G, and -H). A total of 180 R. equi isolates were studied from four different sources, namely healthy horse feces (112), soil (12), stalls (23), and clinical isolates (33) from horse-breeding farms. The technique was performed and confirmed by sequencing of amplified vap gene family controls. Thirty-two (17.8%) of the R. equi isolates were positive for the vapA gene and carried at least three other vap genes. All 147 isolates from equine feces, stalls, and soil failed to demonstrate any genes associated with virulence-inducing proteins. About 32 (97.0%) out of the 33 clinical equine isolates tested positive for the multiplex PCR assay for the vap gene family. They demonstrated six molecular profiles: 100% featured the vapA, vapD, and vapG genes, 86.6% vapF, 76.6% vapH, 43.3% vapC, 36.6% vapE, and none vapB. The most frequent molecular profile was vap A, -D, -F, G, and -H, where this profile was present in 37.5% of the strains. Moreover, there was no molecular epidemiological pattern for R. equi isolates that uniquely mapped to each horse-breeding farm studied. Our proposed technique allows the identification of eight members of the vap gene family (vapA, B, -C, -D, -E, -F, -G, and -H). It is a practical and efficient method of conducting clinical and epidemiological studies on R. equi isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bell KS, Philip JC, Christofi N, Aw DWJ (1996) Identification of Rhodococcus equi using the polymerase chain reaction. Lett Appl Microbiol 23:72–74

    Article  PubMed  CAS  Google Scholar 

  2. Byrne BA, Prescott JF, Palmer GH et al (2001) Virulence plasmid of Rhodococcus equi contains inducible gene family encoding secreted proteins. Infect Immun 69:650–656

    Article  PubMed  CAS  Google Scholar 

  3. Cantor CH, Byrne BA, Hines SA, Richards HM (1998) Vap-A negative Rhodococcus equi in a dog with necrotizing pyogranulomatous hepatitis, osteomyelitis, and myositis. J Vet Diagn Invest 10:297–300

    PubMed  CAS  Google Scholar 

  4. Giguèrre S, Hondalus MK, Yager JA et al (1999) Role of the 85 Kb plasmid and plasmid encoded virulence protein A in intracellular survival and virulence of R. equi. Infect Immun 67:3548–3557

    Google Scholar 

  5. Halbert ND, Reitzel RA, Martens RJ, Cohen ND (2005) Evaluation of a multiplex polymerase chain reaction assay for simultaneous detection of Rhodococcus equi and the vapA gene. Am J Vet Res 66:1380–1385

    Article  PubMed  CAS  Google Scholar 

  6. Hondalus MK (1997) Rhodococcus equi: pathogenesis and virulence. Vet Microbiol 56:257–268

    Article  PubMed  CAS  Google Scholar 

  7. Hondalus MK, Mosser DM (1994) Survival and replication of Rhodococcus equi in macrophages. Infect Immun 62:4167–4175

    PubMed  CAS  Google Scholar 

  8. Jacks S, Giguérre S, Prescott JF (2007) In vivo expression of and cell-mediated immune responses to the plasmid-encoded virulence-associated proteins of Rhodococcus equi in foals. Clin vac immun 14:369–374

    Article  CAS  Google Scholar 

  9. Jain S, Bloom BR, Hondalus MK (2003) Deletion of vapA encoding virulence associated protein A attenuates the intracellular actinomycete Rhodococcus equi. Mol Microbiol 50:115–128

    Article  PubMed  CAS  Google Scholar 

  10. Krewer CC, Spricigo DA, Botton SA et al (2008) Molecular characterization of Rhodococcus equi isolates of horse breeding farms from endemic region in south of Brazil by multiplex PCR. Braz J Microbiol 39:1–6

    Article  Google Scholar 

  11. Lazzari A, Vargas AC, Dutra V et al (1997) Aspectos epidemiológicos do Rhodococcus equi em eqüinos do município de Bagé, RS, Brasil. Cien Rural 27:441–446

    Google Scholar 

  12. Makrai L, Takai S, Tamura M et al (2002) Characterization of virulence plasmid types in Rhodococcus equi isolates from foals, pigs, humans and soil in Hungary. Vet Microbiol 88:377–384

    Article  PubMed  CAS  Google Scholar 

  13. Mizuno FS, Sakamoto M, Yoshikawa MK (2005) VapB-positive Rhodococcus equi infection in an HIV-infected patient in Japan. J Infect Chemother 11:37–40

    Article  PubMed  Google Scholar 

  14. Muscatello G, Anderson GA, Gilkerson JR, Browning GF (2006) Associations between the ecology of virulent Rhodococcus equi and the epidemiology of R. equi pneumonia on Australian thoroughbred farms. Appl Environ Microbiol 72:6152–6160

    Article  PubMed  CAS  Google Scholar 

  15. Napoleão F, Damasco PV, Camello TCF et al (2005) Pyogenic liver abscess due to Rhodococcus equi in an immunocompetent host. J Clin Microbiol 43:1002–1004

    Article  PubMed  Google Scholar 

  16. Oldfield C, Bonella H, Renwick L et al (2004) Rapid determination of vapA/vapB genotype in Rhodococcus equi using a differential polymerase chain reaction method. Antonie Van Leeuwenhoek 85:317–326

    Article  PubMed  CAS  Google Scholar 

  17. Pei Y, Dupont C, Sydor T et al (2006) Cholesterol oxidase (ChoE) is not important in the virulence of Rhodococcus equi. Vet Microbiol 118:240–246

    Article  PubMed  CAS  Google Scholar 

  18. Ribeiro MG, Seki I, Yasuoka K et al (2005) Molecular epidemiology of virulent Rhodococcus equi from foals in Brazil: virulence plasmids of 85-kb type I, and a new variant, 87-kb Type III. Comp Immunol Microbiol Infect Dis 28:53–61

    PubMed  Google Scholar 

  19. Sambrook R, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  20. SAS Institute. SAS/STAT User’s guide, Version 8. Cary, 2000 1383p

  21. Staden R, Beal KF, Bonfield JK (2000) The staden package. Methods Mol Biol 132:115–130

    PubMed  CAS  Google Scholar 

  22. Sydor T, Kv Bargen, Becken U et al (2008) A mycolyl transferase mutant of Rhodococcus equi lacking capsule integrity is fully virulent. Vet Microbiol 128:327–341

    Article  PubMed  CAS  Google Scholar 

  23. Takai S, Sekisaki T, Osawa A (1991) Association between a large plasmid and 15–17 kDa antigens in virulent Rhodococcus equi. Infect Immun 59:4056–4060

    PubMed  CAS  Google Scholar 

  24. Takai S, Ikeda T, Sasaki Y et al (1995) Identification of virulent Rhodococcus equi by amplification of gene coding 15-to 17-Kilodalton antigens. J Clin Microbiol 33:1624–1627

    PubMed  CAS  Google Scholar 

  25. Takai S, Imai Y, Fukunaga N et al (1995) Identification of virulence-associated antigens and plasmids in Rhodococcus equi from patients with AIDS. J Infect Dis 172:1306–1311

    PubMed  CAS  Google Scholar 

  26. Takai S, Fukunaga N, Ochiai S et al (1996) Isolation of virulent and intermediately virulent R. equi from soil and sand on parks and yards in Japan. J Vet Med Sci 58:669–672

    PubMed  CAS  Google Scholar 

  27. Takai S, Fukunaga N, Ochiai S et al (1996) Identification of intermediately virulent Rhodococcus equi isolates from pig. J Clin Microbiol 34:1034–1037

    PubMed  CAS  Google Scholar 

  28. Takai S, Hines AS, Sekizaki T et al (2000) DNA sequence and comparison of virulence plasmids from Rhodococcus equi ATCC 33701 and 103. Infect Immun 68:6840–6847

    Article  PubMed  CAS  Google Scholar 

  29. Takai S, Anzai T, Fujita Y et al (2000) Pathogenicity of Rhodococcus equi expressing a virulence-associated 20 kDa protein (VapB) in foals. Vet Microbiol 76:71–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico, CNPq/Brazil grant 471694/2007-0 and Fundação de Apoio a Pesquisa do Estado do Rio Grande do Sul, Fapergs/Brazil grant 07/50917.0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Monego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monego, F., Maboni, F., Krewer, C. et al. Molecular Characterization of Rhodococcus equi from Horse-Breeding Farms by Means of Multiplex PCR for the vap Gene Family. Curr Microbiol 58, 399–403 (2009). https://doi.org/10.1007/s00284-009-9370-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9370-6

Keywords

Navigation