Skip to main content
Log in

Identification of Sodium Chloride-Regulated Genes in Burkholderia cenocepacia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Ausubel F, Brent M, Kingston RE et al (1989) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  3. Bernadac A, Gavioli M, Lazzaroni J et al (1998) Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180:4872–4878

    PubMed  CAS  Google Scholar 

  4. Brachmann CB, Sherman JM, Devine SE et al (1995) The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression and chromosome stability. Genes Dev 9:2888–2902

    Article  PubMed  CAS  Google Scholar 

  5. Cheung KJ, Baarinarayana V, Selinger DW et al (2003) A microarray-based antibiotic screen identifies a regulatory role or supercoiling in the osmotic stress response of Escherichia coli. Genome Res 13:206–215

    Article  PubMed  CAS  Google Scholar 

  6. Darling P, Chan M, Cox AD et al (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877

    PubMed  CAS  Google Scholar 

  7. Gilligan PH (1991) Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol 4:35–51

    CAS  Google Scholar 

  8. Heilpern AJ, Waldor MK (2000) CTXΦ infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol 182:1739–1747

    Article  PubMed  CAS  Google Scholar 

  9. Huber B, Feldmann F, Kothe M et al (2004) Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 72:7220–7230

    Article  PubMed  CAS  Google Scholar 

  10. Isles A., Maclusky I, Corey M et al (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210

    Article  PubMed  CAS  Google Scholar 

  11. Kaerberlein M., Andalis AA, Fink GR et al (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22:8056–8066

    Article  Google Scholar 

  12. Lonon MK, Morris-Hooke A (1991) A nonhemolytic phospholipase C produced by Pseudomonas cepacia. Curr Microbiol 23:139–142

    Article  CAS  Google Scholar 

  13. McKevitt AI, Bajaksouzian S, Klinger JD et al (1989) Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect Immun 57:771–778

    PubMed  CAS  Google Scholar 

  14. Merriman TR, Lamont IL (1993) Construction and use of a self-cloning promoter probe vector for gram-negative bacteria. Gene 126:17–23

    Article  PubMed  CAS  Google Scholar 

  15. Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  16. Mohr CD, Tomich M, Herfst CA (2001) Cellular aspects of Burkholderia cepacia infection. Microb Infect 3:425–435

    Article  CAS  Google Scholar 

  17. Neidhardt FC, Curtiss R (1996) Escherichia coli and Salmonella: cellular and molecular biology. 2nd ed. ASM Press, Washington, DC

    Google Scholar 

  18. Schwan WR, Lee JL, Lenard FA et al (2002) Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect Immun 70:1391–1402

    Article  PubMed  CAS  Google Scholar 

  19. Smith JJ, Travis SM, Greenberg EP et al (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236

    Article  PubMed  CAS  Google Scholar 

  20. Sokol PA, Darling P, Woods DE et al (1999) Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia:characterization of pvdA, the gene encoding L-ornithine N5-oxygenase. Infect Immun 67:4443–4455

    PubMed  CAS  Google Scholar 

  21. Starai VJ, Celic I, Cole RN et al (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392

    Article  PubMed  CAS  Google Scholar 

  22. Sturgis JN (2001) Organisation and evolution of the tol-pal gene cluster. J Mol Microbiol Biotechnol 3:113–122

    PubMed  CAS  Google Scholar 

  23. Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96:715–720

    Article  PubMed  CAS  Google Scholar 

  24. Tomich M, Mohr CD (2004) Transcriptional and posttranscriptional control of cable pilus gene expression in Burkholderia cenocepacia. J Bacteriol 186:1009–1020

    Article  PubMed  CAS  Google Scholar 

  25. Webster RE (1991) The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol 5:1005–1011

    Article  PubMed  CAS  Google Scholar 

  26. Weingart CL, White CE, Liu S et al (2005) Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro. Mol Microbiol 57:452–467

    Article  PubMed  CAS  Google Scholar 

  27. Zabner J, Smith JL, Karp PH et al (1998) Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelial in vitro. Mol Cell 2:397–403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Polly and Reid Anderson Endowment in the Sciences, the Student Research and Grants Committee from Denison University, and the Howard Hughes Early Research Experience

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Weingart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, S., Weingart, C.L. Identification of Sodium Chloride-Regulated Genes in Burkholderia cenocepacia . Curr Microbiol 56, 418–422 (2008). https://doi.org/10.1007/s00284-008-9114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9114-z

Keywords

Navigation