Skip to main content
Log in

Conjugal Transfer of Plasmid R6K γ ori Minireplicon Derivatives from Escherichia coli to Various Genera of Pathogenic Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Three R6K-derived γ ori minireplicons were successfully transferred by conjugation from Escherichia coli to several species of pathogenic bacteria. The pFL129 replicon encodes the wild-type initiation replication protein π, while plasmids pFL130 and pAG101 encode mutant forms of the π protein conferring the plasmid copy-up phenotype. Plasmids could be transferred to all recipient species tested, although high efficiency conjugal transfer was only obtained with genera of the Enterobacteriaceae. The efficiency of plasmid transfer to all recipients was lower for the copy-up derivatives, pFL130 and pAG101, than for pFL129. The three γ ori replicons were stably maintained in all transconjugants except pFL129 in Listeria monocytogenes. The two mutant plasmids retained their copy-up phenotype in the new bacterial hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boulos L, Prevost M, Barbeau B, et al. (1999) LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microb Meth 37:77–86

    Article  CAS  Google Scholar 

  2. Crosa JH (1980) Three origins of replication are active in vivo in the R plasmid RSF1040. J Biol Chem 255:11075–11077

    PubMed  CAS  Google Scholar 

  3. de Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405

    Article  PubMed  CAS  Google Scholar 

  4. del Solar G, Alonso JC, Espinosa M, et al. (1996) Broad host-range plasmid replication: an open question. Mol Microbiol 21:661–666

    Article  PubMed  Google Scholar 

  5. Filutowicz M, McEachern MJ, Helinski DR (1986) Positive and negative roles of an initiator protein at an origin of replication. Proc Natl Acad Sci USA 83:9645–9649

    Article  PubMed  CAS  Google Scholar 

  6. Filutowicz M, Rakowski SA (1998) Regulatory implications of protein assemblies at the γ origin of plasmid R6K—a review. Gene 223:195–204

    Article  PubMed  CAS  Google Scholar 

  7. Geromino J, Bastia D (1983) Interaction of the plasmid R6K-encoded replication initiator protein with its binding sites on DNA. Cell 34:125–134

    Article  Google Scholar 

  8. Greerer A, Filutowicz M, McEachern MJ, et al. (1990) N-terminal truncated forms of the bifunctional gp initiation protein express negative activity on plasmid R6K replication. Mol Gen Genet 224:24–32

    Google Scholar 

  9. Haugan K, Karanakaran P, Tondervik A, et al. (1995) The host range of RK2 minimal replicon copy-up mutants is limited by species-specific differences in the maximum tolerable copy number. Plasmid 33:27–39

    Article  PubMed  CAS  Google Scholar 

  10. Inuzuka N, Inuzuka M, Helinski DR (1980) Activity in vitro of three replication origins of the antibiotic resistance plasmid RSF1040. J Biol Chem 255:11071–11074

    PubMed  CAS  Google Scholar 

  11. Kontomichalou P, Mitani M, Clowes RC (1970) Circular R-factor molecules controlling penicillinase synthesis, replicating in Escherichia coli under either relaxed or stringent control. J Bacteriol 104:34–44

    PubMed  CAS  Google Scholar 

  12. Krüger R, Filutowicz M (2003) Characterization of His-tagged R6K-encoded gp protein variants. Plasmid 50:80–85

    Article  PubMed  CAS  Google Scholar 

  13. Kunnimalaiyaan S, Kruger Ross W (2004) Binding modes of the initiator and inhibitor forms of the replication protein π to the γ ori iteron of plasmid R6K. J Biol Chem 279:41058–41066

    Article  PubMed  CAS  Google Scholar 

  14. Kunnimalaiyaan S, Inman RB, Rakowski SA, et al. (2005) Role of π dimmers in coupling (“handcuffing”) of plasmid R6K’s γ ori iterons. J Bacteriol 187:3779–3785

    Article  PubMed  CAS  Google Scholar 

  15. LeRoux F, Binesse J, Saulnier D, et al. (2006) Construction of a Vibrio splendidus Vsm metalloprotease mutant using a novel counter-selectable suicide vector. Appl Environ Microbiol 62:65–74

    Google Scholar 

  16. Levchenko I, Inman RB, Filutowicz M (1997) Replication of the R6K γ origin in vitro: dependence on wt π and hyperactive gpS87N protein variant. Gene 193:97–103

    Article  PubMed  CAS  Google Scholar 

  17. Metcalf WW, Jiang W, Daniels LL, et al. (1996) Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13

    Article  PubMed  CAS  Google Scholar 

  18. Miller JH (1972) Appendix I. Formulas and recipes. In: Miller JH (ed) Experiments in molecular genetics. Cold Spring Harbor, NY: CSH Laboratory Press

    Google Scholar 

  19. Molecular Probes (2004) LIVE/DEAD BacLight Bacterial Viability kits—product information. In: Handbook of fluorescent probes and research products, 9th ed

  20. Núñez B, Avila P, de la Cruz F (1997) Genes involved in conjugative DNA processing of plasmid R6K. Mol Microbiol 24:1157–1168

    Article  PubMed  Google Scholar 

  21. Oshiro EE, Nepomuceno RS, Faria JB, et al. (2006) Site-directed gene replacement of the phytopathogen Xanthomonas axonopodis pv. citri. J Microbiol Methods 65:171–179

    Article  PubMed  CAS  Google Scholar 

  22. Peng Y, Rakowski SA, Filutowicz M (2006) Small deletion variants of the replication protein, π, and their potential over-replication-based antimicrobial activity. FEMS Microbiol Lett 261:245–252

    Article  PubMed  CAS  Google Scholar 

  23. Postafi G, Koob M, Hradecna Z, et al. (1994) In vivo excision and amplification of large segments of the Escherichia coli genome. Nucl Acids Res 22:2392–2398

    Article  Google Scholar 

  24. Reece KS, Philips GJ (1995) New plasmids carrying antibiotic-resistance cassettes. Gene 165:141–142

    Article  PubMed  CAS  Google Scholar 

  25. Schumann R, Schiewer U, Karoten U, et al. (2003) Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquat Microb Ecol 32:137–150

    Article  Google Scholar 

  26. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791

    Article  CAS  Google Scholar 

  27. Thomas CM (1981) Complementation analysis of replication and maintenance functions of broad host range plasmids RK2 and RP1. Plasmid 5:277–291

    Article  PubMed  CAS  Google Scholar 

  28. Thomas CM (1989) Promiscuous plasmids of gram-negative bacteria. London: San Diego, Academic Press

    Google Scholar 

  29. Wild J, Czyz A, Rakowski SA, et al. (2004) γ origin plasmids of R6K lineage replicate in diverse genera of Gram-negative bacteria. Ann Microb 54:119–128

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Polish Ministry of Science through the Faculty of Biology, Warsaw University intramural grants, BW 1636/21 and BW 1680/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Grudniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grudniak, A.M., Kraczkiewicz-Dowjat, A., Wolska, K.I. et al. Conjugal Transfer of Plasmid R6K γ ori Minireplicon Derivatives from Escherichia coli to Various Genera of Pathogenic Bacteria. Curr Microbiol 55, 549–553 (2007). https://doi.org/10.1007/s00284-007-9032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-9032-5

Keywords

Navigation