Skip to main content
Log in

Analysis of Twin-Arginine Translocation Pathway Homologue in Staphylococcus aureus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus releases a large number of exoproteins, including membrane-active proteins and toxins with superantigenic activity involved in pathogenicity. However, the export pathways of exoproteins in S. aureus have not been reported. We analyzed the function of the staphylococcal twin-arginine translocation (Tat) pathway homologue, the presence of which was recently discovered according to the genome database. The amino-acid sequences of the Tat homologues of S. aureus do not have a high similarity with those of Escherichia coli and other bacteria. Constructed tatC-deficient mutants from distinct parent strains showed the same patterns of exoproteins compared with those of parent strains on two-dementional gel electrophoresis, and the amounts of secreted staphylococcal enterotoxins and toxic shock syndrome toxin-1, of which signal peptides have some features often seen in signal sequences of Tat-dependent proteins, did not change with Western blotting analyses. Therefore, it seems that the Tat pathway does not play a major role in the secretion system of S. aureus, but other export pathways may play an important role in toxin secretion. This is the first experimental report showing the influence of the Tat pathway on the secretion of S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Literature Cited

  1. Allen SC, Barrett CM, Ray N, et al. (2002) Essential cytoplasmic domains in the Escherichia coli TatC protein. J Biol Chem 277:10362–10366

    Article  PubMed  CAS  Google Scholar 

  2. Antelmann H, Tjalsma H, Voigt B, et al. (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 11:1484–1502

    Article  PubMed  CAS  Google Scholar 

  3. Berkeley RCW, Pepper EA, Caulfield MP, et al. (1978) Inhibition of Staphylococcus aureus ENTEROTOXIN-a production by cerulenin and quinacrine—presumptive evidence for a lipid intermediate-protease release mechanism. FEMS Microbiol Lett 4:103–105

    Article  CAS  Google Scholar 

  4. Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404

    Article  PubMed  CAS  Google Scholar 

  5. Bogsch E, Brink S, Robinson C (1997) Pathway specificity for a delta pH-dependent precursor thylakoid lumen protein is governed by a ‘Sec-avoidance’ motif in the transfer peptide and a ‘Sec-incompatible’ mature protein. Embo J 16:3851–3859

    Article  PubMed  CAS  Google Scholar 

  6. Bogsch EG, Sargent F, Stanley NR, et al. (1998) An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273:18003–18006

    Article  PubMed  CAS  Google Scholar 

  7. Buchanan G, Leeuw E, Stanley NR, et al. (2002) Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43:1457–1470

    Article  PubMed  CAS  Google Scholar 

  8. Cao TB, Saier MH Jr. (2003) The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609:115–125

    Article  PubMed  CAS  Google Scholar 

  9. Chanal A, Santini C, Wu L (1998) Potential receptor function of three homologous components, TatA, TatB and TatE, of the twin-arginine signal sequence-dependent metalloenzyme translocation pathway in Escherichia coli. Mol Microbiol 30:674–676

    Article  PubMed  CAS  Google Scholar 

  10. Christianson KK, Tweten RK, Iandolo JJ (1985) Transport and processing staphylococcal enterotoxin A. Appl Environ Microbiol 50:696–697

    PubMed  CAS  Google Scholar 

  11. Dilks K, Rose RW, Hartmann E, et al. (2003) Prokaryotic use of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483

    Article  PubMed  CAS  Google Scholar 

  12. Drew D, Sjostrand D, Nilsson J, et al. (2002) Rapid topology mapping Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A 99:2690–2695

    Article  PubMed  CAS  Google Scholar 

  13. Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, et al. (1998) Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 42:199–209

    Article  PubMed  CAS  Google Scholar 

  14. Hinsley AP, Stanley NR, Palmer T, et al. (2001) A naturally occurring bacterial Tat signal peptide lacking one of the ‘invariant’ arginine residues of the consensus targeting motif. FEBS Lett 497:45–49

    Article  PubMed  CAS  Google Scholar 

  15. Jongbloed JD, Antelmann H, Hecker M, et al. (2002) Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 277:44068–44078

    Article  PubMed  CAS  Google Scholar 

  16. Kuroda M, Ohta T, Uchiyama I, et al. (2001) Whole genome sequencing meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240

    Article  PubMed  CAS  Google Scholar 

  17. Molik S, Karnauchov I, Weidlich C, et al. (2001) The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts? J Biol Chem 276:42761–42766

    Article  PubMed  CAS  Google Scholar 

  18. Mori H, Summer EJ, Cline K (2001) Chloroplast TatC plays a direct role in thylakoid (Delta)pH-dependent protein transport. FEBS Lett 501:65–68

    Article  PubMed  CAS  Google Scholar 

  19. Nakano M, Kawano Y, Kawagishi M, et al. (2002) Two-dimensional analysis of exoproteins of methicillin-resistant Staphylococcus aureus (MRSA) for possible epidemiological applications. Microbiol Immunol 46:11–22

    PubMed  CAS  Google Scholar 

  20. Nakano M, Miyazawa H, Kawano Y, et al. (2002) An outbreak of neonatal toxic shock syndrome-like exanthematous disease (NTED) caused by methicillin-resistant Staphylococcus aureus (MRSA) in a neonatal intensive care unit. Microbiol Immunol 46:277–284

    PubMed  CAS  Google Scholar 

  21. Papageorgiou AC, Tranter HS, Acharya KR (1998) Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 A resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J Mol Biol 277:61–79

    Article  PubMed  CAS  Google Scholar 

  22. Pradel N, Ye C, Livrelli V, et al. (2003) Contribution of the twin arginine translocation system to the virulence of enterohemorrhagic Escherichia coli O157:H7. Infect Immun 71:4908–4916

    Article  PubMed  CAS  Google Scholar 

  23. Robinson C, Bolhuis A (2001) Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2: 350–356

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  25. Sargent F, Bogsch EG, Stanley NR, et al. (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway. Embo J 17:3640–3650

    Article  PubMed  CAS  Google Scholar 

  26. Schenk S, Laddaga RA (1992) Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 73:133–138

    Article  PubMed  CAS  Google Scholar 

  27. Stanley NR, Findlay K, Berks BC, et al. (2001) Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J Bacteriol 183:139–144

    Article  PubMed  CAS  Google Scholar 

  28. Stanley NR, Palmer T, Berks BC (2000) The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275:11591–11596

    Article  PubMed  CAS  Google Scholar 

  29. Tjalsma H, Bolhuis A, Jongbloed JD, et al. (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  PubMed  CAS  Google Scholar 

  30. Tweten RK, Christianson KK, Iandolo JJ (1983) Transport and processing staphylococcal alpha-toxin. J Bacteriol 156:524–528

    PubMed  CAS  Google Scholar 

  31. Tweten RK, Iandolo JJ (1983) Transport and processing staphylococcal enterotoxin B. J Bacteriol 153:297–303

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid No. 14370090 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Ohta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Sanzen, I., Ohkura, T. et al. Analysis of Twin-Arginine Translocation Pathway Homologue in Staphylococcus aureus . Curr Microbiol 55, 14–19 (2007). https://doi.org/10.1007/s00284-006-0461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0461-3

Keywords

Navigation