Skip to main content
Log in

Characterisation of the gap Operon from Lactobacillus plantarum and Lactobacillus sakei

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Glycolysis constitutes the primary energy-generating pathway of most species of lactic acid bacteria. The metabolism ultimately results in massive lactic acid production, which is responsible for the major preservative effect of these organisms. This study reports the identification, sequencing, and characterisation of the central glycolytic operon, the gap operon, from Lactobacillus plantarum NC8 and L. sakei Lb790. The structure of the operons of the two Lactobacillus strains were similar and organised in the order cggR-gap-pgk-tpi-eno, encoding a putative central glycolytic gene regulator and the four glycolytic enzymes glyceraldehyde-3−phosphate dehydrogenase, phosphoglycerate kinase, triosephosphate isomerase, and enolase, respectively. This operon structure has not been reported in any other bacterial species so far. Transcriptional analysis revealed three major transcripts, the mono-cistronic gap and eno and the tetra-cistronic gap-pgk-tpi-eno.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Literature Cited

  1. Aukrust T, Blom H (1992) Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res Int 25:253–261

    Article  CAS  Google Scholar 

  2. Axelsson L, Ahrné S (2000) Lactic acid bacteria. In: Priest FG, Goodfellow M (eds) Applied microbial systematics. The Netherlands, Kluwer Academic, pp. 365–386

    Google Scholar 

  3. Axelsson L, Holck A (1995) The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177:2125–2137

    PubMed  CAS  Google Scholar 

  4. Branny P, de la Torre F, Garel JR (1998) An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: Glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase. Microbiology 144:905–914

    PubMed  CAS  Google Scholar 

  5. Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, et al. (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23:1527–1533

    Article  PubMed  CAS  Google Scholar 

  6. Champomier-Vergès MC, Chaillou S, Cornet M, Zagorec M (2002) Lactobacillus sakei: Recent developments and future prospects. Res Microbiol 153:115–123

    Article  PubMed  Google Scholar 

  7. Doan T, Aymerich S (2003) Regulation of the central glycolytic genes in Bacillus subtilis: Binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol Microbiol 47:1709–1721

    Article  PubMed  CAS  Google Scholar 

  8. Ferain T, Garmyn D, Bernard N, Hols P, Delcour J (1994) Lactobacillus plantarum ldhL gene: Overexpression and deletion. J Bacteriol 176:596–601

    PubMed  CAS  Google Scholar 

  9. Ferain T, Hobbs JN Jr, Richardson J, Bernard N, Garmyn D, Hols P, et al. (1996) Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J Bacteriol 178:5431–5437

    PubMed  CAS  Google Scholar 

  10. Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037

    Article  PubMed  CAS  Google Scholar 

  11. Fothergill-Gilmore LA, Michels PA (1993) Evolution of glycolysis. Prog Biophys Mol Biol 59:105–235

    Article  PubMed  CAS  Google Scholar 

  12. Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. London, UK, Chapman & Hall, pp. 19–54

    Google Scholar 

  13. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, et al. (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995

    Article  PubMed  CAS  Google Scholar 

  14. Lauret R, Morel-Deville F, Berthier F, Champomier-Verges M, Postma P, Ehrlich SD, et al. (1996) Carbohydrate utilization in Lactobacillus sake. Appl Environ Microbiol 62:1922–1927

    PubMed  CAS  Google Scholar 

  15. Le Bras G, De la Torre F, Branny P, Garel JR (1998) Enzymatic and genetic regulation of glycolysis in Lactobacillus delbrueckii subsp. bulgaricus. Lait 78:85–90

    Article  CAS  Google Scholar 

  16. Ludwig H, Homuth G, Schmalisch M, Dyka FM, Hecker M, Stulke J (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: Evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41:409–422

    Article  PubMed  CAS  Google Scholar 

  17. Malleret C, Lauret R, Ehrlich SD, Morel-Deville F, Zagorec M (1998) Disruption of the sole ldhL gene in Lactobacillus sakei prevents the production of both L- and D-lactate. Microbiology 144:3327–3333

    Article  PubMed  CAS  Google Scholar 

  18. Marceau A, Zagorec M, Champomier-Verges M (2002) Analysis of Lactobacillus sakei adaptation to its environment by a proteomic approach. Sci Aliments 22:97–105

    CAS  Google Scholar 

  19. Meinken C, Blencke HM, Ludwig H, Stulke J (2003) Expression of the glycolytic gapA operon in Bacillus subtilis: Differential syntheses of proteins encoded by the operon. Microbiology 149:751–761

    Article  PubMed  CAS  Google Scholar 

  20. Møretrø T, Naterstad K, Wang E, Aasen IM, Chaillou S, Zagorec M, et al. (2005) Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Res Microbiol 156:949–960

    Article  PubMed  CAS  Google Scholar 

  21. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    PubMed  CAS  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. 2nd ed. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory

    Google Scholar 

  23. Schillinger U, Lücke F-K (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    PubMed  CAS  Google Scholar 

  24. Schreiber W, Durre P (2000) Differential expression of genes within the gap operon of Clostridium acetobutylicum. Anaerobe 6:291–297

    Article  CAS  Google Scholar 

  25. Schreiber W, Dürre P (1999) The glyceraldehyde-3-phosphate dehydrogenase of Clostridium acetobutylicum: Isolation and purification of the enzyme, and sequencing and localization of the gapgene within a cluster of other glycolytic genes. Microbiology 145:1839–1847

    Article  PubMed  CAS  Google Scholar 

  26. Stentz R, Lauret R, Ehrlich SD, Morel-Deville F, Zagorec M (1997) Molecular cloning and analysis of the ptsHI operon in Lactobacillus sake. Appl Environ Microbiol 63:2111–2116

    PubMed  CAS  Google Scholar 

  27. Tillett D, Burns BP, Neilan BA (2000) Optimized rapid amplification of cDNA ends (RACE) for mapping bacterial mRNA transcripts. Biotechniques 28:448–456

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Naterstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naterstad, K., Rud, I., Kvam, I. et al. Characterisation of the gap Operon from Lactobacillus plantarum and Lactobacillus sakei . Curr Microbiol 54, 180–185 (2007). https://doi.org/10.1007/s00284-006-0013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0013-x

Keywords

Navigation