Skip to main content
Log in

Regulation of the Ubiquinone (Coenzyme Q) Biosynthetic Genes ubiCA in Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Ubiquinone (Coenzyme Q) is an essential component of bacterial respiratory chains. The first committed step in the biosynthetic pathway is the formation of 4-hydroxybenzoate from chorismate by the enzyme chorismate pyruvate-lyase encoded by the ubiC gene. The 4-hydroxybenzoate is prenylated by 4-hydroxybenzoate octaprenyltransferase encoded by the ubiA gene. The two genes are linked at 91.5 min in the Escherichia coli chromosome. To study the regulation, operon fusions were constructed between these two genes and the lacZ gene. The fusions were introduced into the chromosome as a single copy at the lambda attachment site. Expression of β-galactosidase was determined in strains carrying the operon fusions ubiC’-lacZ+ ubiCA’-lacZ+, and ubiA’-lacZ+. In glycerol media, the highest level of expression was observed with the operon fusion ubiC’-lacZ+. Compared with the ubiC’-lacZ+, the ubiCA’-lacZ+ operon fusion showed 26% of the activity while the ubiA’-lacZ+ operon fusion had an activity of 1%. Thus, the ubiC gene is regulated by the upstream promoter while the ubiA gene lacks its own promoter. The effect of fermentable and oxidizable carbon sources on the expression of ubiC’-lacZ+ was determined. The expression was low in the case of a fermentable carbon source, glucose, while in the presence of oxidizable carbon sources the expression increased 2- to 3-fold. When the expression of ubiC’-lacZ+ and ubiCA’-lacZ+ operon fusions were compared under a wide variety of conditions, the levels of β-galactosidase varied coordinately, suggesting that the ubiCA genes are organized into an operon. The variations in transcription of the operon under different nutritional conditions and in the regulatory mutants, arcA, fnr, and narXL are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Literature Cited

  1. CR Amarasingham BD Davis (1965) ArticleTitleRegulation of α-ketoglutarate dehydrogenase formation in Escherichia coli J Biol Chem 240 3664–3668 Occurrence Handle1:CAS:528:DyaF2MXksVSrs7Y%3D Occurrence Handle5319784

    CAS  PubMed  Google Scholar 

  2. R Bentley (1990) ArticleTitleThe shikimate pathway—a metabolic tree with many branches Crit Rev Biochem Mol Biol 25 307–384 Occurrence Handle1:CAS:528:DyaK3MXit1emu7c%3D Occurrence Handle2279393

    CAS  PubMed  Google Scholar 

  3. R Bentley R Meganathan (1982) ArticleTitleBiosynthesis of vitamin K (menaquinone) in bacteria Microbiol Rev 46 241–280 Occurrence Handle1:CAS:528:DyaL38XmtFais7w%3D Occurrence Handle6127606

    CAS  PubMed  Google Scholar 

  4. F Brito JA DeMoss M Dubourdieu (1995) ArticleTitleIsolation and identification of menaquinone-9 from purified nitrate reductase of Escherichia coli J Bacteriol 177 3728–3735 Occurrence Handle1:CAS:528:DyaK2MXmsFymtbs%3D Occurrence Handle7601837

    CAS  PubMed  Google Scholar 

  5. RC Chiang R Cavicchioli RP Gunsalus (1992) ArticleTitleIdentification and characterization of narQ, a second nitrate sensor for nitrate-dependent gene regulation in Escherichia coli Mol Microbiol 6 1913–1923 Occurrence Handle1:CAS:528:DyaK3sXkt1Cgsbg%3D Occurrence Handle1508040

    CAS  PubMed  Google Scholar 

  6. PA Cotter RP Gunsalus (1989) ArticleTitleOxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli J Bacteriol 171 3817–3823 Occurrence Handle1:CAS:528:DyaL1MXkslajurs%3D Occurrence Handle2544558

    CAS  PubMed  Google Scholar 

  7. JE Cronen D Laporte (1996) Tricarboxylic acid cycle and glyoxylate bypass FC Neidhardt R Curtiss SuffixIII JL Ingraham ECC Lin KB Low B Magasanik WS Reznikoff M Riley M Schaechter HE Umbarger (Eds) Escherichia coli and Salmonella: Cellular and molecular biology American Society for Microbiology Washington, D.C. 206–216

    Google Scholar 

  8. I Gibert M Llagostera J Barbe (1988) ArticleTitleRegulation of ubiG gene expression in Escherichia coli J Bacteriol 170 1346–1349 Occurrence Handle1:CAS:528:DyaL1cXhsVCgurc%3D Occurrence Handle2830238

    CAS  PubMed  Google Scholar 

  9. CT Gray JWT Wimpenny MR Mossman (1966) ArticleTitleRegulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli Biochim Biophys Acta 117 33–41 Occurrence Handle1:CAS:528:DyaF28XhtVOis78%3D Occurrence Handle5330664

    CAS  PubMed  Google Scholar 

  10. JR Guest (1979) ArticleTitleAnaerobic growth of Escherichia coli K-12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants J Gen Microbiol 115 259–271 Occurrence Handle1:CAS:528:DyaL3cXhsVejtr8%3D Occurrence Handle393800

    CAS  PubMed  Google Scholar 

  11. JR Guest J Green S Spiro C Prodromou AD Sharrocks (1990) Regulation of gene expression by oxygen in Escherichia coli G Hauska R Thauer (Eds) The molecular basis of bacterial metabolism Springer Berlin Heidelberg New York 134–145

    Google Scholar 

  12. RP Gunsalus (1992) ArticleTitleControl of electron flow in Escherichia coli: Coordinated transcription of respiratory pathway genes J Bacteriol 174 7069–7074 Occurrence Handle1:CAS:528:DyaK3sXhvV2juw%3D%3D Occurrence Handle1331024

    CAS  PubMed  Google Scholar 

  13. HM Jones RP Gunsalus (1987) ArticleTitleRegulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product J Bacteriol 169 3340–3349 Occurrence Handle1:CAS:528:DyaL2sXkslWrsbY%3D Occurrence Handle3298218

    CAS  PubMed  Google Scholar 

  14. T Kolesnikow I Schroder RP Gunsalus (1992) ArticleTitleRegulation of narK gene expression in Escherichia coli in response to anaerobiosis, nitrate, iron, and molybdenum J Bacteriol 174 7104–7111 Occurrence Handle1:CAS:528:DyaK3sXhvFSisQ%3D%3D Occurrence Handle1429433

    CAS  PubMed  Google Scholar 

  15. A Kröger (1977) ArticleTitlePhosphorylative electron transport with fumarate and nitrate as terminal electron acceptors Symp Soc Gen Microbiol 27 61–93

    Google Scholar 

  16. O Kwon MES Hudspeth R Meganathan (1996) ArticleTitleAnaerobic biosynthesis of enterobactin in Escherichia coli: regulation of entC gene expression and evidence against its involvement in menaquinone (vitamin K2) biosynthesis J Bacteriol 178 3252–3259 Occurrence Handle1:CAS:528:DyaK28Xjt1Kmu7c%3D Occurrence Handle8655506

    CAS  PubMed  Google Scholar 

  17. J Lawrence GB Cox F Gibson (1974) ArticleTitleBiosynthesis of ubiquinone in Escherichia coli K-12: Biochemical and genetic characterization of a mutant unable to convert chorismate to 4-hydroxybenzoate J Bacteriol 118 41–45 Occurrence Handle1:CAS:528:DyaE2cXhsVaqsbc%3D Occurrence Handle4595202

    CAS  PubMed  Google Scholar 

  18. R Meganathan (1984) ArticleTitleInability of men mutants of Escherichia coli to use trimethylamine-N-oxide as an electron acceptor FEMS Microbiol Lett 24 57–62 Occurrence Handle10.1016/0378-1097(84)90340-9 Occurrence Handle1:CAS:528:DyaL2cXls1KqsL0%3D

    Article  CAS  Google Scholar 

  19. R Meganathan (1996) Biosynthesis of the isoprenoid quinones menaquinone (vitamin K2) and ubiquinone (coenzyme Q) FC Neidhardt R Curtiss SuffixIII JL Ingraham ECC Lin KB Low B Magasanik (Eds) Escherichia coli and Salmonella: Cellular and molecular biology American Society for Microbiology Washington, D. C. 642–656

    Google Scholar 

  20. R Meganathan (2001) ArticleTitleUbiquinone biosynthesis in microorganisms FEMS Microbiol Lett 203 131–139 Occurrence Handle10.1016/S0378-1097(01)00330-5 Occurrence Handle1:CAS:528:DC%2BD3MXnt1ShsL8%3D Occurrence Handle11583838

    Article  CAS  PubMed  Google Scholar 

  21. R Meganathan (2001) ArticleTitleBiosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): A perspective on enzymatic mechanisms Vitamins Hormones 61 173–218 Occurrence Handle1:CAS:528:DC%2BD3MXot1ehsw%3D%3D Occurrence Handle11153266

    CAS  PubMed  Google Scholar 

  22. L Miguel R Meganathan (1991) ArticleTitleElectron donors and the quinone involved in dimethyl sulfoxide reduction in Escherichia coli Curr Microbiol 22 109–115

    Google Scholar 

  23. JH Miller (1992) A short course in bacterial genetics. Laboratory manual Cold Spring Harbor Laboratory Press New York

    Google Scholar 

  24. BP Nichols JM Green (1992) ArticleTitleCloning and sequencing of Escherichia coli ubiC and purification of chorismate lyase J Bacteriol 174 5309–5316 Occurrence Handle1:CAS:528:DyaK3sXksVCisrg%3D Occurrence Handle1644758

    CAS  PubMed  Google Scholar 

  25. A Nishimura K Akiyama Y Kohara K Horiuchi (1992) ArticleTitleCorrelation of a subset of pLC plasmids to the physical map of Escherichia coli Microbiol Rev 56 137–151 Occurrence Handle1:CAS:528:DyaK38Xit12jtr4%3D Occurrence Handle1579107

    CAS  PubMed  Google Scholar 

  26. K Salmon SP Hung K Mekjian P Baldi GW Hatfield RP Gunsalus (2003) ArticleTitleGlobal gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR J Biol Chem 278 29837–29855 Occurrence Handle10.1074/jbc.M213060200 Occurrence Handle1:CAS:528:DC%2BD3sXlvFOnsb8%3D Occurrence Handle12754220

    Article  CAS  PubMed  Google Scholar 

  27. J Sambrook EF Fritsch T Maniatis (1989) Molecular cloning: A Laboratory Manual EditionNumber2nd Cold Spring Laboratory Press New York 9.34–9.62

    Google Scholar 

  28. RW Simons F Houman N Kleckner (1987) ArticleTitleImproved single and multicopy lac-based cloning vectors for protein and operon fusions Gene 53 85–96 Occurrence Handle10.1016/0378-1119(87)90095-3 Occurrence Handle1:CAS:528:DyaL2sXksFens7o%3D Occurrence Handle3596251

    Article  CAS  PubMed  Google Scholar 

  29. B Soballe RK Poole (1997) ArticleTitleAerobic and anaerobic regulation of ubiCA operon, encoding enzymes for the first committed steps of ubiquinone biosynthesis in Escherichia coli FEBS Lett 414 373–376 Occurrence Handle10.1016/S0014-5793(97)01041-7 Occurrence Handle1:CAS:528:DyaK2sXlslChtLc%3D Occurrence Handle9315722

    Article  CAS  PubMed  Google Scholar 

  30. S Spiro JR Guest (1991) ArticleTitleAdaptive responses to oxygen limitation in Escherichia coli Trends Biochem Sci 16 310–314 Occurrence Handle10.1016/0968-0004(91)90125-F Occurrence Handle1:CAS:528:DyaK3MXmsFWlu78%3D Occurrence Handle1957353

    Article  CAS  PubMed  Google Scholar 

  31. K Suzuki M Ueda M Yuasa T Nakagawa M Kawamukai H Matsuda (1994) ArticleTitleEvidence that Escherichia coli ubiA product is a functional homolog of yeast COQ2 and the regulation of ubiA gene expression Biosci Biotech Biochem 58 1814–1819 Occurrence Handle1:CAS:528:DyaK2MXitVCntL4%3D

    CAS  Google Scholar 

  32. BJ Wallace IG Young (1977) ArticleTitleRole of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiAmenA double quinone mutant Biochim Biophys Acta 461 84–100 Occurrence Handle1:CAS:528:DyaE2sXksV2qurY%3D Occurrence Handle195602

    CAS  PubMed  Google Scholar 

  33. CT Walsh J Liu F Rusnak M Sakaitani (1990) ArticleTitleMolecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway Chem Rev 90 1105–1129 Occurrence Handle10.1021/cr00105a003 Occurrence Handle1:CAS:528:DyaK3cXmtVOjurc%3D

    Article  CAS  Google Scholar 

  34. G Wu HD Williams F Gibson RK Poole (1993) ArticleTitleMutants of Escherichia coli affected in respiration: The cloning and nucleotide sequence of ubiA, encoding the membrane-bound p-hydroxybenzoate:octaprenyltransferase J Gen Microbiol 139 1795–1805 Occurrence Handle1:CAS:528:DyaK2cXhvVKj Occurrence Handle8409922

    CAS  PubMed  Google Scholar 

  35. G Wu HD Williams M Zamanian F Gibson RK Poole (1992) ArticleTitleIsolation and characterization of Escherichia coli mutants affected in aerobic respiration: The cloning and nucleotide sequence of ubiG. Identification of an S-adenosylmethionine-binding motif in protein, RNA, and small-molecule methyltransferases J Gen Microbiol 138 2101–2112 Occurrence Handle1:CAS:528:DyaK3sXkvV2rur8%3D Occurrence Handle1479344

    CAS  PubMed  Google Scholar 

  36. IG Young RA Leppik JA Hamilton F Gibson (1972) ArticleTitleBiochemical and genetic studies on ubiquinone biosynthesis in Escherichia coli K-12: 4-hydroxybenzoate octaprenyltransferase J Bacteriol 110 18–25 Occurrence Handle1:CAS:528:DyaE38Xhtlyjs7s%3D Occurrence Handle4552989

    CAS  PubMed  Google Scholar 

  37. H Zang GT Javor (2003) ArticleTitleRegulation of the isofunctional genes ubiD and ubiX of the ubiquinone biosynthetic pathway of Escherichia coli FEMS Microbiol Lett 223 67–72 Occurrence Handle10.1016/S0378-1097(03)00343-4 Occurrence Handle12799002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Robert Gunsalus for generously providing strains, plasmids, and phages, and for his invaluable advice and criticism of the manuscript. This research was supported by Public Health Service Grant GM64511 from the National Institutes of Health, and by Molecular and Cellular BioDiscovery Research Program grant M1-0311-00-81 from the Korean Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Meganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, O., Druce-Hoffman, M. & Meganathan, R. Regulation of the Ubiquinone (Coenzyme Q) Biosynthetic Genes ubiCA in Escherichia coli. Curr Microbiol 50, 180–189 (2005). https://doi.org/10.1007/s00284-004-4417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-004-4417-1

Keywords

Navigation