Skip to main content
Log in

Dynamical Systems, Celestial Mechanics, and Music: Pythagoras Revisited

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

I am every day more and more convinced of the Truth of Pythagoras’s Saying, that Nature is sure to act consistently, and with a constant Analogy in all her Operations: From whence I conclude that the same Numbers, by means of which the Agreement of Sounds affects our Ears with Delight, are the very same which please our Eyes and Mind. We shall therefore borrow all our Rules for the Finishing our Proportions, from the Musicians, who are the greatest Masters of this Sort of Numbers, and from those Things wherein Nature shows herself most excellent and compleat.

—Leon Battista Alberti (1407–1472), De Re Aedificatoria

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Notes

  1. Obtained without performing the arithmetic mean with the lower fifth of the F (8/9); it is necessary to include as a note the naturally generated interval between the Pythagorean F and G; this is a whole tone, 3/2 / 4/3 = 9/8.

  2. Quoted in [41, p. 109]; translation from the French by the authors.

  3. Translation from the Italian by the authors.

References

  1. L. B. Alberti. De Re Aedificatoria; Alberti’s Ten Books of Architecture, translated by James Leoni, 1485.

  2. Dante Alighieri. Convivio, c. 1304–1307. English translation: Dante Alighieri. Il Convivio (The Banquet), translated by Richard H. Lansing. Garland Library of Medieval Literature, 1990.

  3. G. H. Anderson. Pythagoras and the origin of music theory. Indiana Theory Review 6 (1983), 35–61.

    Google Scholar 

  4. Anonymous: Early music. Science 276 (1997), 203–205.

  5. R. C. Archibald. Mathematicians and music. Amer. Math. Monthly 31 (1924), 1–25.

    Article  MathSciNet  Google Scholar 

  6. V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer, 1978.

    Book  Google Scholar 

  7. A. Barker. Ptolemy’s Pythagoreans, Archytas, and Plato’s conception of mathematics. Phronesis 39 (1994), 113–135.

    Article  Google Scholar 

  8. C. Burney. A General History of Music, from the Earliest Ages to the Present Period. London, 1776.

  9. O. Calvo, J. H. E. Cartwright, D. L. González, et al. Three-frequency resonances in coupled phase-locked loops. IEEE Transactions on Circuits and Systems 47 (2000), 491–497.

    Article  Google Scholar 

  10. J. H. E. Cartwright, J. Douthett, D. L. González, et al. Two musical paths to the Farey series and devil’s staircase. J. Math. Music 4 (2010), 57–74.

    Article  MathSciNet  Google Scholar 

  11. J. H. E. Cartwright, D. L. González, and O. Piro. Nonlinear dynamics of the perceived pitch of complex sounds. Phys. Rev. Lett. 82 (1999), 5389–5392.

    Article  Google Scholar 

  12. J. H. E. Cartwright, D. L. González, and O. Piro. Universality in three-frequency resonances. Phys. Rev. E 59 (1999), 2902–2906.

    Article  Google Scholar 

  13. J. H. E. Cartwright, D. L. González, and O. Piro. Pitch perception: a dynamical-systems perspective. Proc. Natl. Acad. Sci. USA 98 (2001), 4855–4859.

    Article  Google Scholar 

  14. J. H. E. Cartwright, D. L. González, O. Piro, et al. Aesthetics, dynamics, and musical scales: a golden connection. J. New Musical Res. 31 (2002), 51–58.

    Article  Google Scholar 

  15. N. Copernicus. De revolutionibus orbium coelestium. Johannes Petreius, Nuremberg, 1543.

  16. S. Drake. Renaissance music and experimental science. J. History Ideas 31 (1970), 483–500.

    Article  Google Scholar 

  17. B. Escribano, J. Vanyo, I. Tuval, J. H. E. Cartwright, et al. Dynamics of tidal synchronization and orbit circularization of celestial bodies. Phys. Rev. E 78 (2008), 036216.

    Article  Google Scholar 

  18. R. Fink. The Neanderthal flute and origin of the scale: fang or flint? A response. In Studies in Music Archaeology III, edited by E. Hickmann, A. D. Kilmer, and R. Eichmann, pp. 83–87. Verlag Marie Leidorf, 2003.

  19. G. Galilei. Dialogo sopra i due massimi sistemi del mondo. Gian Battista Landini, Florence, 1632. English translation: Dialogue Concerning the Two Chief World Systems, translated by Stillman Drake, second revised edition. University of California Press, 1967.

  20. V. Galilei. Discorso intorno all’opere di messer Gioseffo Zarlino. Giorgio Marescotti, Florence, 1589.

  21. D. L. González. Fisica e biologia: Storia di un modello. Sistema Naturae 4 (2002), 141–179.

    Google Scholar 

  22. P. Gouk. The harmonic roots of Newtonian science. In Let Newton Be: A New Perspective on His Life and Works, edited by J. Fauvel, R. Flood, M. Shortland, and R. Wilson. Oxford University Press, 1988.

  23. H. Helmholtz. Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Vieweg, 1863.

    MATH  Google Scholar 

  24. R. Herz-Fischler. A “very pleasant theorem.” Coll. Math. J. 24 (1993), 318–324.

    MATH  Google Scholar 

  25. W. Hu and M. White. The cosmic symphony. Scientific American 290 (2004), 44–53.

    Article  Google Scholar 

  26. A. Hurwitz. Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche. Mathematische Annalen 39 (1891), 279–284.

    Article  MathSciNet  Google Scholar 

  27. C. Huygens. Extrait d’une lettre escrite de La Haye, le 26 fevrier 1665. J. des Scavans 11 (16 March) (1665). See the correction published in the following issue, [28].

  28. C. Huygens. Observation a faire sur le dernier article de precedent journal, où il est parlé de la concordance de deux pendules suspenduës à trois ou quatre pieds l’une de l’autre. J. des Scavans 12 (23 March) (1665). Huygens’s notebook is reprinted in [30, vol. 17, p. 185].

  29. C. Huygens. Cosmotheoros. Adriaan Moetjens, The Hague, 1698. English translation: Cosmotheoros. Timothy Childe, London, 1698.

  30. C. Huygens. Œuvres Complètes de Christiaan Huygens, Société Hollandaise des Sciences, 1888–1950.

  31. G. Jones. History of music, theoretical and practical. In Encyclopaedia Londinensis, vol. 16, pp. 285–398. London, 1818.

  32. J. Kepler. Mysterium Cosmographicum. Georg Gruppenbach, Tübingen, 1596.

  33. J. Kepler. Harmonices Mundi. Linz, 1619.

  34. J. Lattard. Gammes et Tempéraments Musicaux. Masson, 1988.

    Google Scholar 

  35. T. Y. Li and J. A. Yorke. Period three implies chaos. Amer. Math. Monthly 82 (1975), 985–992.

    Article  MathSciNet  Google Scholar 

  36. E. Lorenz. Deterministic non-periodic flow. J. Atmos. Sci. 20 (1963), 130–141.

    Article  Google Scholar 

  37. J. P. Luminet, J. R. Weeks, A. Riazuelo, et al. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature 425 (2003), 593–595.

    Article  Google Scholar 

  38. C. Maclaurin. An account of Sir Isaac Newton’s philosophical discoveries. London, 1775.

  39. S. Mahajan. Don’t demean the geometric mean. Amer. J. Phys. 87 (2019), 75–77.

    Article  Google Scholar 

  40. E. G. McClain and M. S. Hung. Chinese cyclic tunings in late antiquity. Ethnomusicology 23 (1979), 205–224.

    Article  Google Scholar 

  41. J. E. McGuire and P. M. Rattans. Newton and the “pipes of pan.” Notes and Records of the Royal Society 21 (1966), 108–143.

    Article  Google Scholar 

  42. M. Mersenne. Harmonie universelle. Sebastien Cramoisy, Paris, 1636.

  43. N. Murray and M. Holman. The role of chaotic resonances in the solar system. Nature 410 (2001), 773–779.

    Article  Google Scholar 

  44. Nicomachus. Manuale Harmonicum (circa 100 ce). English translation: The Manual of Harmonics of Nicomachus the Pythagorean, edited by F. R. Levin. Phanes Press, 1994.

  45. I. C. Percival. Chaos in Hamiltonian systems. Proc. R. Soc. Lond. A 413 (1987), 131–143.

    Article  MathSciNet  Google Scholar 

  46. D. Pescovitz, T. Daly, L. Azerrad, and T. Ferris. The Voyager Golden Record. OZMA Records, 2017.

  47. R. Plomp and W. Levelt. Tonal consonance and critical bandwidth. J. Acoust. Soc. Am. 38 (1965), 548–560.

    Article  Google Scholar 

  48. Proclus. In primum Euclidis elementorum librum commentarii (ca. 410–485). English translation: A Commentary on the First Book of Euclid’s Elements, translated by G. R. Morrow. Princeton University Press, 1970.

  49. D. Proust. The harmony of the spheres from Pythagoras to Voyager. In The Role of Astronomy in Society and Culture, Proceedings IAU Symposium No. 260, 2009, edited by D. Valls-Gabaud and A. Boksenberg, pp. 358–367. International Astronomical Union, 2011.

  50. C. Ptolemy. Harmonics (second century ce).

  51. J. P. Rameau. Traité de l’harmonie réduite à ses principes naturels. J.-B.-C. Ballard, Paris, 1772. English translation: Treatise on Harmony. Translated by Philip Gossett. Dover, 1971

  52. C. Riedweg. Pythagoras: His Life, Teaching, and Influence. Cornell University Press, 2005.

    MATH  Google Scholar 

  53. J. G. Roederer. The Physics and Psychophysics of Music. Springer, 1995.

    Book  Google Scholar 

  54. C. Sagan, F. D. Drake, A. Druyan, et al. Murmurs of Earth. Hodder and Stoughton, 1978.

  55. J. Sauveur. Collected Writings on Musical Acoustics: (Paris 1700–1713). Diapason Press, Utrecht, 1984.

    Google Scholar 

  56. G. Tartini. Trattato di Musica Secondo la Vera Scienza dell’Armonia. Giovanni Manfrè, Padua, 1754.

  57. E. Terhardt. Pitch, consonance, and harmony. J. Acoust. Soc. Am. 55 (1974), 1061–1069

    Article  Google Scholar 

  58. J. Vanyo, B. Escribano, J. H. E. Cartwright, et al. A minimal dynamical model for tidal synchronization and orbit circularization. Celest. Mech. Dyn. Astr. 109 (2011), 181–200.

    Article  MathSciNet  Google Scholar 

  59. S. Von Hoerner. Universal music? Psychol. Music 2 (1974), 18–28.

    Article  Google Scholar 

  60. D. P. Walker. Some aspects of the musical theory of Vincenzo Galilei and Galileo Galilei. Proc. Royal Musical Assoc. 100 (1973–1974), 33–47.

  61. J. Wisdom, S. J. Peale, and F. Mignard. The chaotic rotation of Hyperion. Icarus 58 (1984), 137–152.

    Article  Google Scholar 

  62. D. Wraight. The cimbalo cromatico and other Italian string keyboard instruments with divided accidentals. Schweizer Jahrbuch für Musikwissenschaft 22 (2003), 112–116.

    Google Scholar 

  63. G. Zarlino. De tutte l’opere, in four volumes. Francesco de Franceschi Senese, Venice, 1588–1589.

  64. J. Zhang, G. Harbottle, C. Wang, and Z. Kong. Oldest playable musical instruments found at Jiahu early Neolithic site in China. Nature 401 (1999), 366–367.

    Google Scholar 

  65. L. Zhmud. Pythagoras and the Early Pythagoreans. Oxford University Press, 2012.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julyan H. E. Cartwright.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chapter V of Book IX of Alberti’s Ten Books of Architecture, translated by James Leoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartwright, J.H.E., González, D.L. & Piro, O. Dynamical Systems, Celestial Mechanics, and Music: Pythagoras Revisited. Math Intelligencer 43, 25–39 (2021). https://doi.org/10.1007/s00283-020-10025-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00283-020-10025-x

Navigation