Skip to main content

Advertisement

Log in

An experimental model of cryoglobulin-associated vasculitis in mice

  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lerner AB, Barnura CP, Watson CJ (1947) Studies of cryoglobulins. II. Spontaneous precipttation of protein from serum at 5°C in various disease States. Am J Med Sei 214:416

    Article  CAS  Google Scholar 

  2. Grey HM, Kohler PF (1973) Cryoimmunoglobulins. Semin Heraatol 10:87

    CAS  Google Scholar 

  3. Brauet JC, Clauvel JP, Danon F, Klein M, Seligmann M (1974) Biological and clinical significance of cryoglobulins. A report of 86 cases. Am J Med 57:775

    Article  Google Scholar 

  4. Geltner D, Franklin EC, Frangione B (1980) Antiidiotypic activity in the IgM fractions of mixed cryoglobulins. J Immunol 125:1530

    PubMed  CAS  Google Scholar 

  5. Reeves WH, Chiorazzi N (1986) Interaction between anti-DNA and anti-DNA-binding protein autoantibodies in cryoglobulins from sera of patients with systemic lupus erythematosus. J Exp Med 164:1029

    Article  PubMed  CAS  Google Scholar 

  6. Stone GC, Nardella FA, Oppliger IR, Mannik M (1988) Absence of auto-antiidiotypic activity between the IgM and IgG fractions of human mixed cryoglobulins. J Immunol 140:3114

    PubMed  CAS  Google Scholar 

  7. Middaugh CR, Gerber-Jensen B, Hurvitz A, Paluszek A, Scheffel C, Litman GW (1978) Physicochemical characterization of six monoclonal cryoimmunoglobulins: possible basis for cold-dependent insolubility. Proc Natl Acad Sei USA 75:3440

    Article  CAS  Google Scholar 

  8. Middaugh CR, Lawson EQ, Litman GW, Tisel WA, Mood DA, Rosenberg A (1980) Thermodynamic basis for the abnormal solubility of monoclonal cryoglobulins. Biol Chem 255:6532

    CAS  Google Scholar 

  9. Scoville CD, Turner DH, Lippert IL, Abraham GN (1980) Study of the kinetic and structural properties of a monoclonal immunoglobulin G cryoglobulin. I Biol Chem 255:5847

    CAS  Google Scholar 

  10. Tsai CM, Zopf DA, Yu RK, Wistar R Jr, Ginsburg V (1977) A Walderström macroglobulin that is both a cold agglutinin and a cryoglobulin because it binds N-acetylneuraminosyl residues. Proc Natl Acad Sei USA 74:4591

    Article  CAS  Google Scholar 

  11. Weber RJ, Clem LW (1981) The molecular mechanism of cryopreeipitation and cold agglutination of an IgM η Waldenström macroglobulin with anti-Gd speeificity: Sedimentation analysis and localization of interacting sites. Immunol 127:300

    CAS  Google Scholar 

  12. Patel RD, Brown JC (1985) Preparation and characterization of murine monoclonal antibodies that express both cold agglutinin and cryoglobulin activities. J Immunol 134:4041

    PubMed  CAS  Google Scholar 

  13. Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JfB, Dixon FJ (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198

    Article  PubMed  CAS  Google Scholar 

  14. Abdelmoula M, Spertini F, Shibata T, Gyotoku Y, Luzuy S, Lambert PH, Izui S (1989) IgG3 is the major source of cryoglobulins in mice. J Immunol 143:526

    PubMed  CAS  Google Scholar 

  15. Gyotoku Y, Abdelmoula M, Spertini F, Izui S, Lambert PH (1987) Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice. J Immunol 138:3785

    PubMed  CAS  Google Scholar 

  16. Lemoine R, Berney T, Shibata T, Fulpius T, Gyotoku Y, Shimada H, Sawada S, Izui S (1992) Induction of “wire-loop” lesions by murine monoclonal IgG3 cryoglobulins. Kidney Int 41:65

    Article  PubMed  CAS  Google Scholar 

  17. Delinho RA, Feldman LB, Scharff MD (1986) Tailor-made monoclonal antibodies. Ann Intern Med 104:225

    Google Scholar 

  18. Fulpius T, Spertini F, Reininger L, Izui S (1993) Immunoglobulin heavy chain constant region determines the pathogenicity and the antigen-binding activity of rheumatoid factor. Proc Natl Acad Sei USA 90:2345

    Article  CAS  Google Scholar 

  19. Moll S, Menoud PA, Fulpius T, Pastore Y, Takahashi S, Fossati L, Vassalli JD, Sappino AP, Schifferti JA, Izui S (1995) Induction of plasminogen activator inhibitor type I in murine lupus-like glornerulonephritis. Kidney Int 48:1459

    Article  PubMed  CAS  Google Scholar 

  20. Spertini F, Coulie PG, Van Snick J, Davidson E, Lambert PH, Izui S (1989) Inhibition of cryoprecipitation of murine IgG3 anti-dinitropheny] (DNP) monoclonal antibodies by anionic DNP-amino acid conjugates. Eur J Iramunol 19:273

    Article  CAS  Google Scholar 

  21. Schluesener H, Brunner C, Vass K, Lassmann H (1986) Therapy of rat autoimmune disease by a monoclonal antibody specific for T lymphoblasts. J Immunol 137:3814

    PubMed  CAS  Google Scholar 

  22. Takahashi S, Itoh J, Nose M, Ono M, Yamarnoto T, Kyogoku M (1993) Cloning and cDNA sequence analysis of nephritogenic monoclonal antibodies derived from an MRL/lpr lupus mouse. Mol Immunol 30:177

    Article  PubMed  CAS  Google Scholar 

  23. Rengers JU, Touchard G, Decourt C, Deret S, Michel H, Cogné M (2000) Heavy and light chain primary structures control IgG3 nephritogenicity in an experimental model for cryocrystalglobulinemia. Blood 95:3467

    PubMed  CAS  Google Scholar 

  24. Grey HM, Hirst JW, Cohn M (1971) A new mouse immunoglobulin: IgG3. J Exp Med 133:289

    Article  PubMed  CAS  Google Scholar 

  25. Berney T, Fulpius T, Shibata T, Reininger L, Van Snick J, Shan H, Weigert M, Marshak-Rothstein A, Izui S (1992) Selective pathogenicity of murine rheumatoid factors of the cryoprecipitable IgG3 subclass. Int Immunol 4:93

    Article  PubMed  CAS  Google Scholar 

  26. Wels JA, Word CJ, Rimm D, Der-Balan GP, Martinez HM, Tucker PW, Blattner FR (1984) Structural analysis of the murine IgG3 constant region gene. EMBO J 3:2041

    PubMed  CAS  Google Scholar 

  27. Panka DJ (1997) Glycosylation is influential in murine IgG3 self-association. Mol ImmunoJ 34:593

    Article  CAS  Google Scholar 

  28. Grey HM, Kohler PF, Terry WD, Franklin EC (1968) Human monoclonal γG-cryoglobulins with anti-γ-globulin activity. J Clin Invest 447:1875

    PubMed  CAS  Google Scholar 

  29. Capra JD, Kunkel HG (1970) Aggregation of γG3 proteins: relevance to the hyperviscosity syndrome. J Clin Invest 49:610

    Article  PubMed  CAS  Google Scholar 

  30. Saluk PH, Clem W (1975) Studies on the cryoprecipitation of a human IgG3 cryoglobulin: the effects of temperature-induced conformational changes on theprimary interaction. Immunochemistry 12:29

    Article  CAS  Google Scholar 

  31. Nishimura Y, Nakamura H (1984) Human monoclonal cryoimmunoglobulins. I. Molecular properties of IgG3k (Jir protein) and the cryo-coprecipitability of its molecular fragments by papain. J Biochem 95:255

    PubMed  CAS  Google Scholar 

  32. Spertini F, Donati Y, Welle I, Izui S, Lambert PH (1989) Prevention of murine cryoglobulinemia and associated pathology by monoclonal anti-idiotypic antibody. J Immunol 143:2508

    PubMed  CAS  Google Scholar 

  33. Middaugh CR, Litman GW (1987) Atypical glycosylation of an IgG monoclonal cryoimmunoglobulin. J Biol Chem 262:3671

    PubMed  CAS  Google Scholar 

  34. Lawson EQ, Brandau DT, Trauman PA, Middaugh R (1988) Electrostatic properties of cryoimmunoglobulins. J Immunol 140:1218

    PubMed  CAS  Google Scholar 

  35. Panka DJ, Salant DJ, Jacobson BA, Minto AW, Marshak-Rothstein A (1995) The effect of VH residues 6 and 23 on IgG3 cryoprecipitation and glomerular deposition. Eur J Immunol 25:279

    Article  PubMed  CAS  Google Scholar 

  36. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K, Takeuchi F, Nagano Y, Miyamoto T, Kobata A (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452

    Article  PubMed  CAS  Google Scholar 

  37. Parekh R, Isenberg D, Rook G, Roitt I, Dwek R, Rademacher T (1989) A comparative analysis of disease-associated changes in the glycosylation of serum IgG. J Autoimm 2:101

    Article  CAS  Google Scholar 

  38. Mizuochi T, Hamako J, Nose M, Titani K (1990) Structural changes in the oligosaccharide chains of IgG in autoimmune MRL/Mp-lpr/lpr mice. J Immunol 145:1794

    PubMed  CAS  Google Scholar 

  39. Mizuochi T, Pastore Y, Shikata K, Kuroki A, Kikuchi S, Fulpius T, Nakata M, Fossati-Jimack L, Reininger L, Matsushita M, Fujita T, Izui S (2001) Role of galactosylation in the renal pathogenicity of murine IgG3 monoclonal eryoglobulins. Blood 97:3537

    Article  PubMed  CAS  Google Scholar 

  40. Axford JS, Lydyard PM, Isenberg DA, Mackenzie L, Hay FC, Roitt IM (1987) Reduced B-cell galactosyltransferase activity in rheumatoid arthritis. Lancet II: 1486

    Article  Google Scholar 

  41. Furukawa K, Matsuta K, Takeuchi F, Kosuge E, Miyamoto T, Kobata A (1990) Kinetic study of a galactosyltransferase in the B cells of pattents with rheumatoid arthritis. Int Immunol 2:105

    Article  PubMed  CAS  Google Scholar 

  42. Axford JS, Alavi A, Bond A, Hay FC (1994) Differential B lymphocyte galactosyltransferase activity in the MRL mouse model of rheumatoid arthritis. Autoimmuity 17:157

    Article  CAS  Google Scholar 

  43. Reininger L, Berney T, Shibata T, Spertini F, Merino R, Izui S (1990) Cryoglobulinemia induced by a murine IgG3 rheumatoid factor: skin vasculitis and glomerulonephritis arise from distinct pathogenic mechanisms. Proc Natl Acad Sei USA 87:10038

    Article  CAS  Google Scholar 

  44. IzuiS, Fulpius T, Reininger L, Pastore Y, Kobayakawa T (1998) Role of neutrophiJs in murine cryoglobulinemia. Inflamm Res 47:S145

  45. Verroust P, Morel-Maroger L, Preud’homme JL (1982) Renal lesions in dysproteinemias. Springer Semin Iramunopathol 5:333

    Article  CAS  Google Scholar 

  46. Bernstein KA, Valerio RD, Lefkowith JB (1995) Glomerular binding aciivity in MRL lpr serum consists of antibodies that bind to a DNA/histone/type IV Collagen complex. J Immunol 154:2424

    PubMed  CAS  Google Scholar 

  47. Mohan C, Morel L, Yang P, Watanabe H, Croker B, Gilkeson G, Wakeland EK (1999) Genetic dissection of lupus pathogenesis: arecipe for nephrophilic autoantibodies. J Clin Invest 103:1685

    Article  PubMed  CAS  Google Scholar 

  48. Foster MH, Cizman B, Madaio MP (1993) Biology of disease. Nephritogenic autoantibodies in systemic lupus erytheraatosus: irnmunochemical properties, mechanisrns of immune deposition, and genetic origins. Lab Invest 69:494

    PubMed  CAS  Google Scholar 

  49. Fulpius T, Lemoine R, Berney T, Pastore Y, Moll S, Izui S (1996) Polymorphonuclear leukocytes play a key role in the generation of “wire-toop” lesions induced by a murine IgG3 rheumatoid factor. Kidney Int 49:647

    Article  PubMed  CAS  Google Scholar 

  50. Fossati-Jimack L, Ioan-Facsinay A, Reininger L, Chicheportiche Y, Watanabe N, Saito T, Hofhuis FMA, Gessner JE, Schiller C, Schmidt RE, Honjo T, Verbeek JS, Izui S (2000) Markedly different pathogenicity of four IgG isotype-switch variants of an anti-erythrocyte autoantibody is based on their respective capacity to interact in vivo with the low-affinity FcγRIII. J Exp Med 191:1293

    Article  PubMed  CAS  Google Scholar 

  51. Sylvestre DL, Ravetch JV (1994) Fc receptors initiate the Arthus reaction: redefming the inflarnmatory cascade. Science 265:1095

    Article  PubMed  CAS  Google Scholar 

  52. Sylvestre DL, Ravetch JV (1996) A dominant role for mast cells Fc receptors in the Arthus reaction. Immunity 5:387

    Article  PubMed  CAS  Google Scholar 

  53. Watanabe N, Akikusa B, Park SY, Ohno H, Fossati L, Vecchietri G, Gessner JE, Schmidt RE, Verbeek JS, Ryffel B, Iwamoto I, Izui S, Saito T (1999) Mast cells induce autoantibody-mediated vasculitis syndrome through tumor necrosis factor production upon triggering Fcγ receptors. Blood 94:3855

    PubMed  CAS  Google Scholar 

  54. Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052

    Article  PubMed  CAS  Google Scholar 

  55. Takabashi S, Nose M, Sasaki J, Yamamoto T, Kyogoku M (1991) IgG3 production in MWL/lpr mice is responsible for development of lupus nephritis. J Immunol 147:515

    Google Scholar 

  56. Fossati L, Takahashi S, Merino R, Iwamoto M, Aubry JP, Nose M, Spach C, Motta R, Izui S (1993) An MRL/MpJ-/lpr/lpr substrain with a limited expansion of lpr double-negative T cells and a reduced autoimmune syndrome. Int Immunol 5:525

    Article  PubMed  CAS  Google Scholar 

  57. Takahashi S, Fossati L, Iwamoto M, Merino R, Motta R, Kobayakawa T, Izui S (1996) Imbalance towards Thl predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 97:1597

    Article  PubMed  CAS  Google Scholar 

  58. Fulpius T, Berney T, Lemoine R, Pastore Y, Reininger L, Bdghouse G, Izui S (1994) Glomerulopathy induced by IgG3 anti-trinitrophenyl monoclonal cryoglobulins derived from non-autoimmune mice. Kidney Int 45:962

    Article  PubMed  CAS  Google Scholar 

  59. Diamond B, Yelton DE (1981) A new Fc receptor on mouse macrophages binding IgG3. J Exp Med 153:514

    Article  PubMed  CAS  Google Scholar 

  60. Yuan R, Clynes R, Ravetch JV, Scharff MD (1998) Antibody-mediated modulation of Cryptococcus neoformans infection is dependent on distinct Fc receptor functions and IgG subclasses. J Exp Med 187:641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastore, Y., Lajaunias, F., Kuroki, A. et al. An experimental model of cryoglobulin-associated vasculitis in mice. Springer Semin Immunopathol 23, 315–329 (2001). https://doi.org/10.1007/s002810100075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002810100075

Keywords

Navigation