Skip to main content

Advertisement

Log in

Atherosclerosis and multi-organ-associated pathologies

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory disease of the vascular system that is characterized by the deposition of modified lipoproteins, accumulation of immune cells, and formation of fibrous tissue within the vessel wall. The disease occurs in vessels throughout the body and affects the functions of almost all organs including the lymphoid system, bone marrow, heart, brain, pancreas, adipose tissue, liver, kidneys, and gastrointestinal tract. Atherosclerosis and associated factors influence these tissues via the modulation of local vascular functions, induction of cholesterol-associated pathologies, and regulation of local immune responses. In this review, we discuss how atherosclerosis interferers with functions of different organs via several common pathways and how the disturbance of immunity in atherosclerosis can result in disease-provoking dysfunctions in multiple tissues. Our growing appreciation of the implication of atherosclerosis and associated microenvironmental conditions in the multi-organ pathology promises to influence our understanding of CVD-associated disease pathologies and to provide new therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Libby P et al (2019) Atherosclerosis. Nat Rev Dis Primers 5(1):56

    Article  PubMed  Google Scholar 

  2. Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 27:165–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roy P, Orecchioni M, Ley K (2021) How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol

  4. Silvestre-Roig C et al (2020) Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol 17(6):327–340

    Article  PubMed  Google Scholar 

  5. Getz GS, Reardon CA (2017) Natural killer T cells in atherosclerosis. Nat Rev Cardiol 14(5):304–314

    Article  CAS  PubMed  Google Scholar 

  6. Bot I, Shi GP, Kovanen PT (2015) Mast cells as effectors in atherosclerosis. Arterioscler Thromb Vasc Biol 35(2):265–271

    Article  CAS  PubMed  Google Scholar 

  7. Kim KW, Ivanov S, Williams JW (2020) Monocyte recruitment, specification, and function in atherosclerosis. Cells 10(1)

  8. Kim K et al (2018) Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 123(10):1127–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quintar A et al (2017) Endothelial protective monocyte patrolling in large arteries intensified by western diet and atherosclerosis. Circ Res 120(11):1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baumer Y, et al. (2018) Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis. JCI Insight 3(1)

  11. Angeli V et al (2004) Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21(4):561–574

    Article  CAS  PubMed  Google Scholar 

  12. Ma SD, Mussbacher M, Galkina EV (2021) Functional role of B cells in atherosclerosis. Cells, . 10(2).

  13. Poller WC, Nahrendorf M, Swirski FK (2020) Hematopoiesis and cardiovascular disease. Circ Res 126(8):1061–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noz MP, et al (2020) Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. Elife 9

  15. Murphy AJ et al (2011) ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 121(10):4138–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yvan-Charvet L et al (2010) ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328(5986):1689–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagai Y et al (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24(6):801–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Christ A et al (2018) Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172(1–2):162-175.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bekkering S et al (2019) Treatment with statins does not revert trained immunity in patients with familial hypercholesterolemia. Cell Metab 30(1):1–2

    Article  CAS  PubMed  Google Scholar 

  20. Jaiswal S et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377(2):111–121

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fidler TP et al (2021) The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592(7853):296–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fuster JJ et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355(6327):842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heyde A et al (2021) Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184(5):1348-1361.e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kiel DP et al (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68(5):271–276

    Article  CAS  PubMed  Google Scholar 

  25. Prasad M et al (2014) Coronary microvascular endothelial dysfunction is an independent predictor of development of osteoporosis in postmenopausal women. Vasc Health Risk Manag 10:533–538

    PubMed  PubMed Central  Google Scholar 

  26. Carmona-Fernandes D et al (2021) Atherosclerosis and bone loss in humans-results from deceased donors and from patients submitted to carotid endarterectomy. Front Med (Lausanne) 8:672496

    Article  Google Scholar 

  27. Liu Y et al (2016) Skeletal inflammation and attenuation of Wnt signaling, Wnt ligand expression, and bone formation in atherosclerotic ApoE-null mice. Am J Physiol Endocrinol Metab 310(9):E762–E773

    Article  PubMed  PubMed Central  Google Scholar 

  28. Swirski FK et al (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117(1):195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Combadière C et al (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117(13):1649–1657

    Article  PubMed  CAS  Google Scholar 

  30. Drechsler M et al (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122(18):1837–1845

    Article  CAS  PubMed  Google Scholar 

  31. Rothe G et al (1996) Peripheral blood mononuclear phagocyte subpopulations as cellular markers in hypercholesterolemia. Arterioscler Thromb Vasc Biol 16(12):1437–1447

    Article  CAS  PubMed  Google Scholar 

  32. Guasti L et al (2011) Neutrophils and clinical outcomes in patients with acute coronary syndromes and/or cardiac revascularisation. A systematic review on more than 34,000 subjects. Thromb Haemost 106(4):591–9

  33. Bekkering S et al (2016) Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis 254:228–236

    Article  CAS  PubMed  Google Scholar 

  34. Elsenberg EH et al (2013) Increased cytokine response after toll-like receptor stimulation in patients with stable coronary artery disease. Atherosclerosis 231(2):346–351

    Article  CAS  PubMed  Google Scholar 

  35. Tacke F et al (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117(1):185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bekkering S et al (2014) Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol 34(8):1731–1738

    Article  CAS  PubMed  Google Scholar 

  37. Ammirati E et al (2012) Effector memory T cells are associated with atherosclerosis in humans and animal models. J Am Heart Assoc 1(1):27–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ammirati E et al (2015) The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol 179(2):173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ammirati E et al (2010) Circulating CD4+CD25hiCD127lo regulatory T-cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 30(9):1832–1841

    Article  CAS  PubMed  Google Scholar 

  40. Csányi G, Singla B (2019) Arterial lymphatics in atherosclerosis: old questions, new insights, and remaining challenges. J Clin Med 8(4)

  41. Oliver G et al (2020) The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. Cell 182(2):270–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martel C et al (2013) Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest 123(4):1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kholová I et al (2011) Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur J Clin Invest 41(5):487–497

    Article  PubMed  Google Scholar 

  44. Drozdz K et al (2012) Adventitial lymphatics and atherosclerosis. Lymphology 45(1):26–33

    CAS  PubMed  Google Scholar 

  45. Syväranta S et al (2012) Lymphangiogenesis in aortic valve stenosis–novel regulatory roles for valvular myofibroblasts and mast cells. Atherosclerosis 221(2):366–374

    Article  PubMed  CAS  Google Scholar 

  46. Sajja AP et al (2018) Potential immunological links between psoriasis and cardiovascular disease. Front Immunol 9:1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Machnik A et al (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15(5):545–552

    Article  CAS  PubMed  Google Scholar 

  48. Wiig H et al (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123(7):2803–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lopez Gelston CA et al (2018) Enhancing renal lymphatic expansion prevents hypertension in mice. Circ Res 122(8):1094–1101

    Article  CAS  PubMed  Google Scholar 

  50. Pawlak M, Ho AW, Kuchroo VK (2020) Cytokines and transcription factors in the differentiation of CD4(+) T helper cell subsets and induction of tissue inflammation and autoimmunity. Curr Opin Immunol 67:57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeller CB, Appenzeller S (2008) Cardiovascular disease in systemic lupus erythematosus: the role of traditional and lupus related risk factors. Curr Cardiol Rev 4(2):116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu M et al (2013) Th17/Treg imbalance induced by increased incidence of atherosclerosis in patients with systemic lupus erythematosus (SLE). Clin Rheumatol 32(7):1045–1052

    Article  PubMed  Google Scholar 

  53. Swirski FK et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325(5940):612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu D et al (2015) Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 42(6):1100–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Centa M et al (2019) Germinal center-derived antibodies promote atherosclerosis plaque size and stability. Circulation 139(21):2466–2482

    Article  PubMed  Google Scholar 

  56. Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339(6116):161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Panizzi P et al (2010) Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol 55(15):1629–1638

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dutta P et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487(7407):325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim JS et al (2012) Risk factors and stroke mechanisms in atherosclerotic stroke: intracranial compared with extracranial and anterior compared with posterior circulation disease. Stroke 43(12):3313–3318

    Article  CAS  PubMed  Google Scholar 

  60. Chan CP-y et al (2012) Multiple atherosclerosis-related biomarkers associated with short-and long-term mortality after stroke. Clin Biochem 45(16–17):1308–1315

    Article  CAS  PubMed  Google Scholar 

  61. Holmstedt CA, Turan TN, Chimowitz MI (2013) Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol 12(11):1106–1114

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, et al (2021) Carotid atherosclerotic calcification characteristics relate to post-stroke cognitive impairment. Front Aging Neurosci 13(260)

  63. Li J et al (2016) High-sensitive C-reactive protein predicts recurrent stroke and poor functional outcome: subanalysis of the clopidogrel in high-risk patients with acute nondisabling cerebrovascular events trial. Stroke 47(8):2025–2030

    Article  CAS  PubMed  Google Scholar 

  64. Dolan H et al (2010) Atherosclerosis, dementia, and Alzheimer disease in the Baltimore Longitudinal Study of Aging cohort. Ann Neurol 68(2):231–240

    PubMed  PubMed Central  Google Scholar 

  65. Yarchoan M et al (2012) Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain 135(Pt 12):3749–3756

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xiang J (2017) Carotid atherosclerosis promotes the progression of Alzheimer’s disease: a three-year prospective study. Exp Ther Med 14(2):1321–1326

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gupta A, Iadecola C (2015) Impaired Aβ clearance: a potential link between atherosclerosis and Alzheimer’s disease. Front Aging Neurosci 7:115

    Article  PubMed  PubMed Central  Google Scholar 

  68. Da Mesquita S et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560(7717):185–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zenaro E et al (2015) Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21(8):880–886

    Article  CAS  PubMed  Google Scholar 

  70. Fantuzzi G, Mazzone T (2007) Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol 27(5):996–1003

    Article  CAS  PubMed  Google Scholar 

  71. Nosalski R, Guzik TJ (2017) Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 174(20):3496–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Farias-Itao DS et al (2019) B lymphocytes and macrophages in the perivascular adipose tissue are associated with coronary atherosclerosis: an autopsy study. J Am Heart Assoc 8(24):e013793

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mazzotta C et al (2021) Perivascular adipose tissue inflammation in ischemic heart disease. Arterioscler Thromb Vasc Biol 41(3):1239–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Srikakulapu P et al (2017) Perivascular adipose tissue harbors atheroprotective IgM-producing B cells. Front Physiol 8:719

    Article  PubMed  PubMed Central  Google Scholar 

  75. Keeter WC, Moriarty AK, Galkina EV (2021) Role of neutrophils in type 2 diabetes and associated atherosclerosis. Int J Biochem Cell Biol 106098

  76. Ying W et al (2020) The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol 16(2):81–90

    Article  PubMed  Google Scholar 

  77. Ying W et al (2019) Expansion of islet-resident macrophages leads to inflammation affecting β cell proliferation and function in obesity. Cell Metab 29(2):457-474.e5

    Article  CAS  PubMed  Google Scholar 

  78. Perego C et al (2019) Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim Biophys Acta Mol Basis Dis 1865(9):2149–2156

    Article  CAS  PubMed  Google Scholar 

  79. Lohmann C et al (2009) Atherosclerotic mice exhibit systemic inflammation in periadventitial and visceral adipose tissue, liver, and pancreatic islets. Atherosclerosis 207(2):360–367

    Article  CAS  PubMed  Google Scholar 

  80. Imai Y, et al (2013) Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab 15(Suppl 3 (0 3)):117–29

  81. Allahverdian S et al (2018) Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 114(4):540–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118(4):692–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shankman LS et al (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21(6):628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramel D et al (2019) Immune and smooth muscle cells interactions in atherosclerosis: how to target a breaking bad dialogue? Front Pharmacol 10:1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Butoi E, et al (2016) Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Biochim Biophys Acta 1863(7 Pt A):1568–78.

  86. Gomez D et al (2018) Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat Med 24(9):1418–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gutiérrez-Cuevas, J., A. Santos, and J. Armendariz-Borunda, Pathophysiological molecular mechanisms of obesity: a link between MAFLD and NASH with cardiovascular diseases. Int J Mol Sci, 2021. 22(21).

  88. Stahl EP et al (2019) Nonalcoholic fatty liver disease and the heart: JACC state-of-the-art review. J Am Coll Cardiol 73(8):948–963

    Article  PubMed  Google Scholar 

  89. Hundertmark J, Krenkel O, Tacke F (2018) Adapted immune responses of myeloid-derived cells in fatty liver disease. Front Immunol 9(2418)

  90. Armstrong AW et al (2011) A tale of two plaques: convergent mechanisms of T-cell-mediated inflammation in psoriasis and atherosclerosis. Exp Dermatol 20(7):544–549

    Article  CAS  PubMed  Google Scholar 

  91. Mehta NN et al (2017) IFN-γ and TNF-α synergism may provide a link between psoriasis and inflammatory atherogenesis. Sci Rep 7(1):13831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Villani AP et al (2021) Vascular inflammation in moderate-to-severe atopic dermatitis is associated with enhanced Th2 response. Allergy 76(10):3107–3121

    Article  CAS  PubMed  Google Scholar 

  93. Tsuchida Y (1993) The effect of aging and arteriosclerosis on human skin blood flow. J Dermatol Sci 5(3):175–181

    Article  CAS  PubMed  Google Scholar 

  94. Kurilenko N, et al (2021) Act locally, act globally-microbiota, barriers, and cytokines in atherosclerosis. Cells 10(2)

  95. Geng S, et al (2019) Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. Science advances 5(2):eaav2309-eaav2309

  96. Pussinen PJ et al (2007) Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler Thromb Vasc Biol 27(6):1433–1439

    Article  CAS  PubMed  Google Scholar 

  97. Schumski A et al (2021) Endotoxinemia accelerates atherosclerosis through electrostatic charge–mediated monocyte adhesion. Circulation 143(3):254–266

    Article  CAS  PubMed  Google Scholar 

  98. Piya MK, Harte AL, McTernan PG (2013) Metabolic endotoxaemia: is it more than just a gut feeling? Curr Opin Lipidol 24(1):78–85

    Article  CAS  PubMed  Google Scholar 

  99. Weissman S et al (2020) Atherosclerotic cardiovascular disease in inflammatory bowel disease: the role of chronic inflammation. World J Gastrointest Pathophysiol 11(5):104–113

    Article  PubMed  PubMed Central  Google Scholar 

  100. Adkins C, Rezaie A (2018) Small intestinal bacterial overgrowth and coronary artery disease: what is in the CArDs? Dig Dis Sci 63(2):271–272

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our many colleagues whose important work we were unable to cite due to space limitations. Figure illustrations were created with Servier Medical Art.

Funding

The authors are supported by the National Institutes of Health under awards R01HL142129 and R01HL139000 (EVG) and AHA pre-doctoral fellowship 20PRE35180156 (AKM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Galkina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Inflammation in vascular diseases - Guest Editors: Mariana Kaplan & Peter Grayson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keeter, W.C., Ma, S., Stahr, N. et al. Atherosclerosis and multi-organ-associated pathologies. Semin Immunopathol 44, 363–374 (2022). https://doi.org/10.1007/s00281-022-00914-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00914-y

Keywords

Navigation