Skip to main content

Advertisement

Log in

The microbiome and IgA nephropathy

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The immunopathogenic mechanisms underlying immunoglobulin A nephropathy (IgAN) are poorly understood, yet it is one of the most common causes of kidney failure globally. The commonly referenced syndrome of synpharyngitic gross hematuria as a presenting feature of IgAN has led to a logical association between infections and development of IgAN, however no pathogenic organism has been clearly linked to IgAN. Advances in sequencing technology have enabled more detailed characterization of host microbial communities, and highlighted the interrelationship between microbiota and immune responses in health and disease. This review will summarize current thinking on the relationship between microbiota and development of IgAN with a focus on recent studies relating aberrant mucosal IgA-biased immune responses to microbiota and how this may be related to the immunopathogenesis of IgAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848. https://doi.org/10.1016/j.cell.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  2. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340. https://doi.org/10.1016/j.cell.2016.01.013

    Article  CAS  PubMed  Google Scholar 

  3. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107:11971–11975. https://doi.org/10.1073/pnas.1002601107

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. https://doi.org/10.1038/nature11319

    Article  CAS  PubMed  Google Scholar 

  7. Candela M, Biagi E, Brigidi P, O’Toole PW, De Vos WM (2014) Maintenance of a healthy trajectory of the intestinal microbiome during aging: a dietary approach. Mech Ageing Dev 136–137:70–75. https://doi.org/10.1016/j.mad.2013.12.004

    Article  PubMed  Google Scholar 

  8. Heintz C, Mair W (2014) You are what you host: microbiome modulation of the aging process. Cell 156:408–411. https://doi.org/10.1016/j.cell.2014.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. https://doi.org/10.1126/science.1208344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Modi SR, Collins JJ, Relman DA (2014) Antibiotics and the gut microbiota. J Clin Investig 124:4212–4218. https://doi.org/10.1172/JCI72333

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336. https://doi.org/10.1038/nature10213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong R, Bai M, Zhao J, Wang D, Ning X et al (2020) A comparative study of the gut microbiota associated with immunoglobulin a nephropathy and membranous nephropathy. Front Cell Infect Microbiol 10:557368. https://doi.org/10.3389/fcimb.2020.557368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Macpherson AJ, Geuking MB, McCoy KD (2012) Homeland security: IgA immunity at the frontiers of the body. Trends Immunol 33:160–167. https://doi.org/10.1016/j.it.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  14. Huus KE, Petersen C, Finlay BB (2021) Diversity and dynamism of IgA−microbiota interactions. Nat Rev Immunol 21:514–525. https://doi.org/10.1038/s41577-021-00506-1

    Article  CAS  PubMed  Google Scholar 

  15. Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC et al (2017) Natural polyreactive IgA antibodies coat the intestinal microbiota. Science. https://doi.org/10.1126/science.aan6619

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stokes CR, Soothill JF, Turner MW (1975) Immune exclusion is a function of IgA. Nature 255:745–746. https://doi.org/10.1038/255745a0

    Article  CAS  PubMed  Google Scholar 

  17. Moor K, Diard M, Sellin ME, Felmy B, Wotzka SY et al (2017) High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544:498–502. https://doi.org/10.1038/nature22058

    Article  CAS  PubMed  Google Scholar 

  18. Isho B, Florescu A, Wang AA, Gommerman JL (2021) Fantastic IgA plasma cells and where to find them. Immunol Rev. https://doi.org/10.1111/imr.12980

    Article  PubMed  Google Scholar 

  19. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S et al (2009) Uptake through glycoprotein 2 of FimH (+) bacteria by M cells initiates mucosal immune response. Nature 462:226–230. https://doi.org/10.1038/nature08529

    Article  CAS  PubMed  Google Scholar 

  20. Iwasaki A, Kelsall BL (2000) Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (Mip)-3α, Mip-3β, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394. https://doi.org/10.1084/jem.191.8.1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665. https://doi.org/10.1126/science.1091334

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Derynck R (2000) Transcriptional regulation of the transforming growth factor-beta -inducible mouse germ line Ig alpha constant region gene by functional cooperation of Smad, CREB, and AML family members. J Biol Chem 275:16979–16985. https://doi.org/10.1074/jbc.M001526200

    Article  CAS  PubMed  Google Scholar 

  23. Cerutti A (2008) The regulation of IgA class switching. Nat Rev Immunol 8:421–434. https://doi.org/10.1038/nri2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H et al (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226. https://doi.org/10.1126/science.288.5474.2222

    Article  CAS  PubMed  Google Scholar 

  25. Landsverk OJB, Snir O, Casado RB, Richter L, Mold JE et al (2017) Antibody-secreting plasma cells persist for decades in human intestine. J Exp Med 214:309–317. https://doi.org/10.1084/jem.20161590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaetzel CS (2014) Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host–microbial mutualism. Immunol Lett 162:10–21. https://doi.org/10.1016/j.imlet.2014.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moon C, Baldridge MT, Wallace MA, Burnham C-AD et al (2015) Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 521:90–93. https://doi.org/10.1038/nature14139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lemke A, Kraft M, Roth K, Riedel R, Lammerding D et al (2016) Long-lived plasma cells are generated in mucosal immune responses and contribute to the bone marrow plasma cell pool in mice. Mucosal Immunol 9:83–97. https://doi.org/10.1038/mi.2015.38

    Article  CAS  PubMed  Google Scholar 

  29. Fitzpatrick Z, Frazer G, Ferro A, Clare S, Bouladoux N et al (2020) Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587:472–476. https://doi.org/10.1038/s41586-020-2886-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rojas OL, Probstel AK, Porfilio EA, Wang AA, Charabati M et al (2019) Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176:610-624.e18. https://doi.org/10.1016/j.cell.2018.11.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pröbstel A-K, Zhou X, Baumann R, Wischnewski S, Kutza M et al (2020) Gut microbiota–specific IgA+ B cells traffic to the CNS in active multiple sclerosis. Science Immunology 5:eabc7191. https://doi.org/10.1126/sciimmunol.abc7191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stern JNH, Yaari G, Vander Heiden JA, Church G, Donahue WF et al (2014) B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 6:248ra107-248ra107. https://doi.org/10.1126/scitranslmed.3008879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gommerman JL, Rojas OL, Fritz JH (2014) Re-thinking the functions of IgA+ plasma cells. Gut Microbes 5:652–662. https://doi.org/10.4161/19490976.2014.969977

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pollok K, Mothes R, Ulbricht C, Liebheit A, Gerken JD et al (2017) The chronically inflamed central nervous system provides niches for long-lived plasma cells. Acta Neuropathol Commun 5:88. https://doi.org/10.1186/s40478-017-0487-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Monteiro RC, Halbwachs-Mecarelli L, Roque-Barreira MC, Noel LH, Berger J et al (1985) Charge and size of mesangial IgA in IgA nephropathy. Kidney Int 28:666–671. https://doi.org/10.1038/ki.1985.181

    Article  CAS  PubMed  Google Scholar 

  36. Tomino Y, Sakai H, Miura M, Endoh M, Nomoto Y (1982) Detection of polymeric IgA in glomeruli from patients with IgA nephropathy. Clin Exp Immunol 49:419–425

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Oortwijn BD, van der Boog PJ, Roos A, van der Geest RN, de Fijter JW et al (2006) A pathogenic role for secretory IgA in IgA nephropathy. Kidney Int 69:1131–1138. https://doi.org/10.1038/sj.ki.5000074

    Article  CAS  PubMed  Google Scholar 

  38. Zhang JJ, Xu LX, Liu G, Zhao MH, Wang HY (2008) The level of serum secretory IgA of patients with IgA nephropathy is elevated and associated with pathological phenotypes. Nephrol Dial Transplant 23:207–212. https://doi.org/10.1093/ndt/gfm492

    Article  CAS  PubMed  Google Scholar 

  39. Oortwijn BD, Rastaldi MP, Roos A, Mattinzoli D, Daha MR et al (2007) Demonstration of secretory IgA in kidneys of patients with IgA nephropathy. Nephrol Dial Transplant 22:3191–3195. https://doi.org/10.1093/ndt/gfm346

    Article  CAS  PubMed  Google Scholar 

  40. Tomana M, Novak J, Julian BA, Matousovic K, Konecny K et al (1999) Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Investig 104:73–81. https://doi.org/10.1172/JCI5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP et al (2017) Galactosylation of IgA1 Is associated with common variation in C1GALT1. J Am Soc Nephrol 28:2158–2166. https://doi.org/10.1681/ASN.2016091043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin W, Zhong X, Fan JM, Zhang YJ, Liu XR et al (2008) External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dial Transplant 23:1608–1614. https://doi.org/10.1093/ndt/gfm781

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki H, Raska M, Yamada K, Moldoveanu Z, Julian BA et al (2014) Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J Biol Chem 289:5330–5339. https://doi.org/10.1074/jbc.M113.512277

    Article  CAS  PubMed  Google Scholar 

  44. Makita Y, Suzuki H, Kano T, Takahata A, Julian BA et al (2020) TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int 97:340–349. https://doi.org/10.1016/j.kint.2019.08.022

    Article  CAS  PubMed  Google Scholar 

  45. Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M et al (2014) Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46:1187–1196. https://doi.org/10.1038/ng.3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fellstrom BC, Barratt J, Cook H, Coppo R, Feehally J et al (2017) Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet 389:2117–2127. https://doi.org/10.1016/S0140-6736(17)30550-0

    Article  PubMed  Google Scholar 

  47. Muto M, Manfroi B, Suzuki H, Joh K, Nagai M et al (2017) Toll-Like receptor 9 stimulation induces aberrant expression of a proliferation-inducing ligand by tonsillar germinal center B cells in IgA nephropathy. J Am Soc Nephrol 28:1227–1238. https://doi.org/10.1681/ASN.2016050496

    Article  CAS  PubMed  Google Scholar 

  48. Harper SJ, Allen AC, Pringle JH, Feehally J (1996) Increased dimeric IgA producing B cells in the bone marrow in IgA nephropathy determined by in situ hybridisation for J chain mRNA. J Clin Pathol 49:38–42. https://doi.org/10.1136/jcp.49.1.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilmore JR, Gaudette BT, Gomez Atria D, Hashemi T, Jones DD et al (2018) Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis. Cell Host Microbe 23:302-311.e3. https://doi.org/10.1016/j.chom.2018.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berger J, Hinglais N (1968) Intercapillary deposits of IgA-IgG. J Urol Nephrol (Paris) 74:694–695. https://doi.org/10.1681/ASN.V11101957

    Article  CAS  Google Scholar 

  51. Ibels LS, Gyory AZ (1994) IgA nephropathy: analysis of the natural history, important factors in the progression of renal disease, and a review of the literature. Medicine (Baltimore) 73:79–102. https://doi.org/10.1097/00005792-199403000-00002

    Article  CAS  Google Scholar 

  52. Maeda I, Hayashi T, Sato KK, Shibata MO, Hamada M et al (2012) Tonsillectomy has beneficial effects on remission and progression of IgA nephropathy independent of steroid therapy. Nephrol Dial Transplant 27:2806–2813. https://doi.org/10.1093/ndt/gfs053

    Article  PubMed  Google Scholar 

  53. Nakata J, Suzuki Y, Suzuki H, Sato D, Kano T et al (2014) Changes in nephritogenic serum galactose-deficient IgA1 in IgA nephropathy following tonsillectomy and steroid therapy. PLoS ONE 9:e89707. https://doi.org/10.1371/journal.pone.0089707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suzuki S, Nakatomi Y, Sato H, Tsukada H, Arakawa M (1994) Haemophilus parainfluenzae antigen and antibody in renal biopsy samples and serum of patients with IgA nephropathy. Lancet 343:12–16. https://doi.org/10.1016/S0140-6736(94)90875-3

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto C, Suzuki S, Kimura H, Yoshida H, Gejyo F (2002) Experimental nephropathy induced by Haemophilus parainfluenzae antigens. Nephron 90:320–327. https://doi.org/10.1159/000049068

    Article  CAS  PubMed  Google Scholar 

  56. Nasr SH, D’Agati VD (2011) IgA-dominant postinfectious glomerulonephritis: a new twist on an old disease. Nephron Clin Pract 119:c18–c25. https://doi.org/10.1159/000324180 (discussion c6)

    Article  CAS  PubMed  Google Scholar 

  57. Koyama A, Sharmin S, Sakurai H, Shimizu Y, Hirayama K et al (2004) Staphylococcus aureus cell envelope antigen is a new candidate for the induction of IgA nephropathy. Kidney Int 66:121–132. https://doi.org/10.1111/j.1523-1755.2004.00714.x

    Article  CAS  PubMed  Google Scholar 

  58. Sharmin S, Shimizu Y, Hagiwara M, Hirayama K, Koyama A (2004) Staphylococcus aureus antigens induce IgA-type glomerulonephritis in Balb/c mice. J Nephrol 17:504–511

    CAS  PubMed  Google Scholar 

  59. Piccolo M, De Angelis M, Lauriero G, Montemurno E, Di Cagno R et al (2015) Salivary microbiota associated with immunoglobulin a nephropathy. Microb Ecol 70:557–565. https://doi.org/10.1007/s00248-015-0592-9

    Article  CAS  PubMed  Google Scholar 

  60. Watanabe H, Goto S, Mori H, Higashi K, Hosomichi K et al (2017) Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy. Nephrol Dial Transplant 32:2072–2079. https://doi.org/10.1093/ndt/gfw343

    Article  CAS  PubMed  Google Scholar 

  61. Park JI, Kim T-Y, Oh B, Cho H, Kim JE et al (2020) Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases. Sci Rep 10:16206. https://doi.org/10.1038/s41598-020-73035-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G et al (2014) Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE 9:e99006. https://doi.org/10.1371/journal.pone.0099006

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315. https://doi.org/10.1038/ki.2012.345

    Article  PubMed  Google Scholar 

  64. McCarthy DD, Chiu S, Gao Y, Summers-deLuca LE, Gommerman JL (2006) BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol 241:85–94. https://doi.org/10.1016/j.cellimm.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  65. McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U et al (2011) Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest 121:3991–4002. https://doi.org/10.1172/JCI45563

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P et al (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–317. https://doi.org/10.1038/ng.787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H et al (2012) Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8:e1002765. https://doi.org/10.1371/journal.pgen.1002765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chemouny JM, Gleeson PJ, Abbad L, Lauriero G, Boedec E et al (2019) Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice. Nephrol Dial Transplant 34:1135–1144. https://doi.org/10.1093/ndt/gfy323

    Article  CAS  PubMed  Google Scholar 

  69. Young VB (2017) The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356:j831. https://doi.org/10.1136/bmj.j831

    Article  PubMed  Google Scholar 

  70. Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489:250–256. https://doi.org/10.1038/nature11553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript design and writing of the primary and revised text. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Heather N. Reich.

Ethics declarations

Conflict of interest

Dr. Reich is the national coordinating investigator and is a site investigator for the NEFIGARD study of Nefecon in IgAN (Calliditas). Dr. Reich is also the national coordinating investigator for the ALIGN study of Atrasentan in IgAN (Chinook). She is a site investigator and member of the academic steering committee for the ARTEMIS study of OMS721 in IgAN (Omeros), and a site co-investigator for the study of Cemdisiran in IgAN (Alnylam). She has received honoraria for consultation from Novartis, and Travere related to treatment of IgAN. The Toronto Glomerulonephritis Fellowship is supported by the Louise Fast Foundation. She has no other financial or non-financial conflicts to declare and the authors did not receive support from any organization for the submitted work. Dr. Gommerman and Dr. Haniuda have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the Special issue on: The IgA system, IgA nephropathy and IgA vasculitis - Guest Editors: Jürgen Floege & Jonathan Barratt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haniuda, K., Gommerman, J.L. & Reich, H.N. The microbiome and IgA nephropathy. Semin Immunopathol 43, 649–656 (2021). https://doi.org/10.1007/s00281-021-00893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-021-00893-6

Keywords

Navigation