Skip to main content

Advertisement

Log in

Glucocorticoid circadian rhythms in immune function

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Adrenal glucocorticoid (GC) hormones are important regulators of energy metabolism, brain functions, and the immune system. Their release follows robust diurnal rhythms and GCs themselves serve as entrainment signals for circadian clocks in various tissues. In the clinics, synthetic GC analogues are widely used as immunosuppressive drugs. GC inhibitory effects on the immune system are well documented and include suppression of cytokines and increased immune cell death. However, the circadian dynamics of GC action are often neglected. Synthetic GC medications fail to mimic complex GC natural rhythms. Several recent publications have shown that endogenous GCs and their daily concentration rhythms prepare the immune system to face anticipated environmental threats. That includes migration patterns that direct specific cell population to organs and tissues best exemplified by the rhythmic expression of chemoattractants and their receptors. On the other hand, chronotherapeutic approaches may benefit the treatment of immunological diseases such as asthma. In this review, we summarise our current knowledge on the circadian regulation of GCs, their role in innate and adaptive immune functions and the implications for the clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179.https://doi.org/10.1146/annurev-neuro-060909-153128

  2. Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462. https://doi.org/10.1146/annurev-neuro-060909-153128

  3. Nicolaides NC, Charmandari E, Kino T, Chrousos GP (2017) Stress-related and circadian secretion and target tissue actions of glucocorticoids: impact on health. Front Endocrinol (Lausanne) 0:70. https://doi.org/10.3389/FENDO.2017.00070

  4. De Kloet ER (2014) From receptor balance to rational glucocorticoid therapy. Endocrinology 155:2754–2769. https://doi.org/10.1210/en.2014-1048

  5. De Bosscher K, Vanden Berghe W, Haegeman G (2003) The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24:488–522. https://doi.org/10.1210/er.2002-0006

  6. Ratman D, Vanden Berghe W, Dejager L et al (2013) How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 380:41–54. https://doi.org/10.1016/j.mce.2012.12.014

  7. Weikum ER, De Vera IMS, Nwachukwu JC et al (2017) Tethering not required: the glucocorticoid receptor binds directly to activator protein-1 recognition motifs to repress inflammatory genes. Nucleic Acids Res 45:8596–8608. https://doi.org/10.1093/nar/gkx509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atkinson HC, Waddell BJ (1997) Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 138:3842–3848. https://doi.org/10.1210/ENDO.138.9.5395

    Article  CAS  PubMed  Google Scholar 

  9. Pilorz V, Steinlechner S, Oster H (2008) Age and oestrus cycle-related changes in glucocorticoid excretion and wheel-running activity in female mice carrying mutations in the circadian clock genes Per1 and Per2. Physiol Behav 96:57–63. https://doi.org/10.1016/j.physbeh.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  10. Hamidovic A, Karapetyan K, Serdarevic F, et al (2020) Higher circulating cortisol in the follicular vs. luteal phase of the menstrual cycle: a meta-analysis. Front Endocrinol (Lausanne) 0:311. https://doi.org/10.3389/FENDO.2020.00311

  11. Heck AL (2018) Handa RJ (2018) Sex differences in the hypothalamic–pituitary–adrenal axis’ response to stress: an important role for gonadal hormones. Neuropsychopharmacol 441(44):45–58. https://doi.org/10.1038/s41386-018-0167-9

    Article  CAS  Google Scholar 

  12. Hamden JE, Salehzadeh M, Jalabert C et al (2019) Measurement of 11-dehydrocorticosterone in mice, rats and songbirds: effects of age, sex and stress. Gen Comp Endocrinol 281:173–182. https://doi.org/10.1016/j.ygcen.2019.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200:3–22. https://doi.org/10.1677/JOE-08-0415

  14. Kuo T, McQueen A, Chen TC, Wang JC (2015) Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol 872:99–126. https://doi.org/10.1007/978-1-4939-2895-8_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vegiopoulos A, Herzig S (2007) Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 275:43–61. https://doi.org/10.1016/j.mce.2007.05.015

  16. Liston C, Cichon JM, Jeanneteau F et al (2013) Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci 16:698–705. https://doi.org/10.1038/nn.3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steckler T, Holsboer F, Reul JMHM (1999) Glucocorticoids and depression. Bailliere’s Best Pract Res Clin Endocrinol Metab 13:597–614. https://doi.org/10.1053/beem.1999.0046

    Article  CAS  Google Scholar 

  18. Bosch OG, Seifritz E, Wetter TC (2012) Stress-related depression: neuroendocrine, genetic, and therapeutical aspects. World J Biol Psychiatry 13:556–568. https://doi.org/10.3109/15622975.2012.665477

  19. Ströhle A, Holsboer F (2003) Stress responsive neurohormones in depression and anxiety. In: Pharmacopsychiatry. Pharmacopsychiatry. https://doi.org/10.1055/s-2003-45132

  20. Joëls M (2011) Impact of glucocorticoids on brain function: Relevance for mood disorders. Psychoneuroendocrinology 36:406–414. https://doi.org/10.1016/j.psyneuen.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  21. Adcock IM, Mumby S (2016) Glucocorticoids. In: Handbook of experimental pharmacology. Springer New York LLC, pp 171–196

  22. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335:2–13. https://doi.org/10.1016/j.mce.2010.04.005

  23. Kunicka JE, Talle MA, Denhardt GH et al (1993) Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone. Cell Immunol 149:39–49. https://doi.org/10.1006/cimm.1993.1134

    Article  CAS  PubMed  Google Scholar 

  24. Almawi WY, Beyhum HN, Rahme AA, Rieder MJ (1996) Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 60:563–572. https://doi.org/10.1002/jlb.60.5.563

  25. Rolfe FG, Hughes JM, Armour CL, Sewell WA (1992) Inhibition of interleukin-5 gene expression by dexamethasone. Immunology 77:494–499

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fushimi T, Okayama H, Shimura S et al (1998) Dexamethasone suppresses gene expression and production of IL-13 by human mast cell line and lung mast cells. J Allergy Clin Immunol 102:134–142. https://doi.org/10.1016/S0091-6749(98)70064-8

    Article  CAS  PubMed  Google Scholar 

  27. Galon J, Franchimont D, Hiroi N et al (2002) Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 16:61–71. https://doi.org/10.1096/fj.01-0245com

    Article  CAS  PubMed  Google Scholar 

  28. Surjit M, Ganti KP, Mukherji A et al (2011) Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145:224–241. https://doi.org/10.1016/j.cell.2011.03.027

    Article  CAS  PubMed  Google Scholar 

  29. Quatrini L, Ugolini S (2021) New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 18:269–278. https://doi.org/10.1038/s41423-020-00526-2

  30. Chapman KE, Coutinho AE, Zhang Z et al (2013) Changing glucocorticoid action: 11β-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation. J Steroid Biochem Mol Biol 137:82–92. https://doi.org/10.1016/j.jsbmb.2013.02.002

  31. Stavreva DA, Wiench M, John S et al (2009) Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat Cell Biol 11:1093–1102. https://doi.org/10.1038/ncb1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tobler A, Meier R, Seitz M et al (1992) Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts. Blood 79:45–51. https://doi.org/10.1182/blood.v79.1.45.45

    Article  CAS  PubMed  Google Scholar 

  33. Daynes RA, Araneo BA (1989) Contrasting effects of glucocorticoids on the capacity of T cells to produce the growth factors interleukin 2 and interleukin 4. Eur J Immunol 19:2319–2325. https://doi.org/10.1002/eji.1830191221

    Article  CAS  PubMed  Google Scholar 

  34. Oursler MJ, Riggs BL, Spelsberg TC (1993) Glucocorticoid-induced activation of latent transforming growth factor-β by normal human osteoblast-like cells. Endocrinology 133:2187–2196. https://doi.org/10.1210/endo.133.5.8404670

    Article  CAS  PubMed  Google Scholar 

  35. Wiegers GJ, Reul JMHM (1998) Induction of cytokine receptors by glucocorticoids: functional and pathological significance. Trends Pharmacol Sci 19:317–321. https://doi.org/10.1016/S0165-6147(98)01229-2

    Article  CAS  PubMed  Google Scholar 

  36. Shieh JH, Peterson RH, Moore MA (1993) Cytokines and dexamethasone modulation of IL-1 receptors on human neutrophils in vitro. J Immunol 150.

  37. Lim HY, Müller N, Herold MJ et al (2007) Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology 122:47–53. https://doi.org/10.1111/j.1365-2567.2007.02611.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frank MG, Miguel ZD, Watkins LR, Maier SF (2010) Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun 24:19–30. https://doi.org/10.1016/j.bbi.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  39. Adachi A, Honda T, Dainichi T et al (2021) Prolonged high-intensity exercise induces fluctuating immune responses to herpes simplex virus infection via glucocorticoids. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2021.04.028

    Article  PubMed  Google Scholar 

  40. Gibbs J, Ince L, Matthews L et al (2014) An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20:919–926. https://doi.org/10.1038/nm.3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ince LM, Zhang Z, Beesley S et al (2019) Circadian variation in pulmonary inflammatory responses is independent of rhythmic glucocorticoid signaling in airway epithelial cells. FASEB J 33:126–139. https://doi.org/10.1096/fj.201800026RR

    Article  CAS  PubMed  Google Scholar 

  42. Zijlstra GJ, Fattahi F, Rozeveld D et al (2014) Glucocorticoids induce the production of the chemoattractant CCL20 in airway epithelium. Eur Respir J 44:361–370. https://doi.org/10.1183/09031936.00209513

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Yang M, Wang X, et al (2021) Glucocorticoids promote CCL20 expression in keratinocytes. Br J Dermatol bjd.20594. https://doi.org/10.1111/bjd.20594

  44. Ronchetti S, Ricci E, Migliorati G, et al (2018) How glucocorticoids affect the neutrophil life. Int. J. Mol. Sci. 19. https://doi.org/10.3390/ijms19124090

  45. Giles KM, Ross K, Rossi AG et al (2001) Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active Rac. J Immunol 167:976–986. https://doi.org/10.4049/jimmunol.167.2.976

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Cousin JM, Hughes J et al (1999) Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J Immunol 162:3639–3646

    CAS  PubMed  Google Scholar 

  47. Keller M, Mazuch J, Abraham U et al (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106:21407–21412. https://doi.org/10.1073/pnas.0906361106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kitchen GB, Cunningham PS, Poolman TM et al (2020) The clock gene Bmal1 inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia. Proc Natl Acad Sci U S A 117:1543–1551. https://doi.org/10.1073/pnas.1915932117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhattacharyya S, Brown DE, Brewer JA et al (2007) Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 109:4313–4319. https://doi.org/10.1182/blood-2006-10-048215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Diaz-Jimenez D, Petrillo MG, Busada JT et al (2020) Glucocorticoids mobilize macrophages by transcriptionally up-regulating the exopeptidase DPP4. J Biol Chem 295:3213–3227. https://doi.org/10.1074/jbc.RA119.010894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lam MTY, Cho H, Lesch HP et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511–515. https://doi.org/10.1038/nature12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gibbs JE, Blaikley J, Beesley S et al (2012) The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 109:582–587. https://doi.org/10.1073/pnas.1106750109

    Article  PubMed  Google Scholar 

  53. Nguyen KD, Fentress SJ, Qiu Y et al (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341(80-):1483–1488. https://doi.org/10.1126/science.1240636

    Article  CAS  PubMed  Google Scholar 

  54. Caulfield J, Fernandez M, Snetkov V et al (2002) CXCR4 expression on monocytes is up-regulated by dexamethasone and is modulated by autologous CD3+ T cells. Immunology 105:155–162. https://doi.org/10.1046/j.0019-2805.2001.01359.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ehrchen J, Steinmüller L, Barczyk K et al (2007) Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109:1265–1274. https://doi.org/10.1182/blood-2006-02-001115

    Article  CAS  PubMed  Google Scholar 

  56. Chen L, Jondal M, Yakimchuk K (2018) Regulatory effects of dexamethasone on NK and T cell immunity. Inflammopharmacology 26:1331–1338. https://doi.org/10.1007/S10787-017-0418-0

    Article  CAS  PubMed  Google Scholar 

  57. Moustaki A, Argyropoulos KV, Baxevanis CN et al (2011) Effect of the simultaneous administration of glucocorticoids and IL-15 on human NK cell phenotype, proliferation and function. Cancer Immunol Immunother 60:1683–1695. https://doi.org/10.1007/S00262-011-1067-6

    Article  CAS  PubMed  Google Scholar 

  58. Quatrini L, Wieduwild E, Guia S et al (2017) Host resistance to endotoxic shock requires the neuroendocrine regulation of group 1 innate lymphoid cells. J Exp Med 214:3531. https://doi.org/10.1084/JEM.20171048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Greenstein AE, Habra MA, Wadekar SA, Grauer A (2021) Adrenal tumors provide insight into the role of cortisol in NK cell activity. Endocr Relat Cancer 28:583–592. https://doi.org/10.1530/ERC-21-0048

    Article  CAS  PubMed  Google Scholar 

  60. Quatrini L, Vacca P, Tumino N et al (2021) Glucocorticoids and the cytokines IL-12, IL-15, and IL-18 present in the tumor microenvironment induce PD-1 expression on human natural killer cells. J Allergy Clin Immunol 147:349–360. https://doi.org/10.1016/J.JACI.2020.04.044

    Article  CAS  PubMed  Google Scholar 

  61. Arjona A, Sarkar DK (2005) Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol 174:7618–7624. https://doi.org/10.4049/JIMMUNOL.174.12.7618

    Article  CAS  PubMed  Google Scholar 

  62. Arjona A, Sarkar DK (2006) Evidence supporting a circadian control of natural killer cell function. Brain Behav Immun 20:469–476. https://doi.org/10.1016/J.BBI.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  63. Gatti G, Del Ponte D, Cavallo R et al (1987) Circadian changes in human natural killer-cell activity. Prog Clin Biol Res 227A:399–409

    CAS  PubMed  Google Scholar 

  64. Logan RW, Wynne O, Levitt D et al (2013) Altered circadian expression of cytokines and cytolytic factors in splenic natural killer cells of Per1−/− mutant mice. J Interf Cytokine Res 33:108. https://doi.org/10.1089/JIR.2012.0092

    Article  CAS  Google Scholar 

  65. Moser M, De Smedt T, Sornasse T et al (1995) Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol 25:2818–2824. https://doi.org/10.1002/eji.1830251016

    Article  CAS  PubMed  Google Scholar 

  66. Chamorro S, García-Vallejo JJ, Unger WWJ et al (2009) TLR triggering on tolerogenic dendritic cells results in TLR2 Up-regulation and a reduced proinflammatory immune program. J Immunol 183:2984–2994. https://doi.org/10.4049/jimmunol.0801155

    Article  CAS  PubMed  Google Scholar 

  67. Sands RW, Tabansky I, Verbeke CS et al (2020) Steroid-peptide immunoconjugates for attenuating T cell responses in an experimental autoimmune encephalomyelitis murine model of multiple sclerosis. Bioconjug Chem 31:2779–2788. https://doi.org/10.1021/acs.bioconjchem.0c00582

    Article  CAS  PubMed  Google Scholar 

  68. Li CC, Munitic I, Mittelstadt PR et al (2015) Suppression of dendritic cell-derived IL-12 by endogenous glucocorticoids is protective in LPS-induced sepsis. PLoS Biol 13:1–16. https://doi.org/10.1371/journal.pbio.1002269

    Article  CAS  Google Scholar 

  69. Hopwood TW, Hall S, Begley N, et al (2018) The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock. Sci Rep 8:. https://doi.org/10.1038/s41598-018-22021-5

  70. Talaber G, Kvell K, Varecza Z et al (2011) Wnt-4 protects thymic epithelial cells against dexamethasone-induced senescence. Rejuvenation Res 14:241–248. https://doi.org/10.1089/rej.2010.1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Živković IP, Rakin AK, Petrović-Djergović DM et al (2005) Exposure to forced swim stress alters morphofunctional characteristics of the rat thymus. J Neuroimmunol 160:77–86. https://doi.org/10.1016/j.jneuroim.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  72. Stojić-Vukanić Z, Rauški A, Kosec D et al (2009) Dysregulation of T-cell development in adrenal glucocorticoid-deprived rats. Exp Biol Med 234:1067–1074. https://doi.org/10.3181/0902-RM-63

    Article  CAS  Google Scholar 

  73. Mittelstadt PR, Monteiro JP, Ashwell JD (2012) Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J Clin Invest 122:2384–2394. https://doi.org/10.1172/JCI63067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zacharchuk CM, Merćep M, Chakraborti PK, et al (1990) Programmed T lymphocyte death. cell activation- and steroid-induced pathways are mutually antagonistic. J Immunol 145

  75. Elenkov IJ (2004) Glucocorticoids and the Th1/Th2 balance. In: Annals of the New York Academy of Sciences. New York Academy of Sciences, pp 138–146. https://doi.org/10.1196/annals.1321.010

  76. Taves MD, Ashwell JD (2021) Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol 21:233–243

    Article  CAS  Google Scholar 

  77. Ramírez F, Fowell DJ, Puklavec M et al (1996) Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J Immunol 156:2406–2412

    PubMed  Google Scholar 

  78. Kashiwada M, Cassel SL, Colgan JD, Rothman PB (2011) NFIL3/E4BP4 controls type 2 T helper cell cytokine expression. EMBO J 30:2071–2082. https://doi.org/10.1038/emboj.2011.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bereshchenko O, Coppo M, Bruscoli S et al (2014) GILZ promotes production of peripherally induced Treg cells and mediates the crosstalk between glucocorticoids and TGF-β signaling. Cell Rep 7:464–475. https://doi.org/10.1016/j.celrep.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  80. Besedovsky L, Born J, Lange T (2014) Endogenous glucocorticoid receptor signaling drives rhythmic changes in human T-cell subset numbers and the expression of the chemokine receptor CXCR4. FASEB J 28:67–75. https://doi.org/10.1096/fj.13-237958

    Article  CAS  PubMed  Google Scholar 

  81. Jourdan P, Vendrell J-P, Huguet M-F et al (2000) Cytokines and cell surface molecules independently induce CXCR4 expression on CD4 + CCR7 + human memory T cells. J Immunol 165:716–724. https://doi.org/10.4049/jimmunol.165.2.716

    Article  CAS  PubMed  Google Scholar 

  82. Franchimont D, Galon J, Vacchio MS et al (2002) Positive effects of glucocorticoids on T cell function by up-regulation of IL-7 receptor α. J Immunol 168:2212–2218. https://doi.org/10.4049/jimmunol.168.5.2212

    Article  CAS  PubMed  Google Scholar 

  83. Diefenbach A, Colonna M, Koyasu S (2014) Development, differentiation, and diversity of innate lymphoid cells. Immunity 41:354–365. https://doi.org/10.1016/j.immuni.2014.09.005

  84. Abe A, Tani-ichi S, Shitara S et al (2015) An Enhancer of the IL-7 receptor α-chain locus controls IL-7 receptor expression and maintenance of peripheral T cells. J Immunol 195:3129–3138. https://doi.org/10.4049/jimmunol.1302447

    Article  CAS  PubMed  Google Scholar 

  85. Shimba A, Cui G, Tani-ichi S et al (2018) Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleukin-7 receptor and CXCR4. Immunity 48:286-298.e6. https://doi.org/10.1016/j.immuni.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  86. Druzd D, Matveeva O, Ince L et al (2017) Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46:120–132. https://doi.org/10.1016/j.immuni.2016.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cain DW, Bortner CD, Diaz-Jimenez D et al (2020) Murine glucocorticoid receptors orchestrate B cell migration selectively between bone marrow and blood. J Immunol 205:619–629. https://doi.org/10.4049/jimmunol.1901135

    Article  CAS  PubMed  Google Scholar 

  88. Jabara HH, Ahern DJ, Vercelli D, Geha RS (1991) Hydrocortisone and IL-4 induce IgE isotype switching in human B cells. J Immunol 147.

  89. Sun W, Zhang L, Lin L, et al (2018) Chronic psychological stress impairs germinal center response by repressing miR-155. https://doi.org/10.1016/j.bbi.2018.11.002

  90. Friedman EM, Irwin M (2001) Central CRH suppresses specific antibody responses: effects of β-adrenoceptor antagonism and adrenalectomy. Brain Behav Immun 15:65–77. https://doi.org/10.1006/brbi.2000.0582

    Article  CAS  PubMed  Google Scholar 

  91. Fleshner M, Deak T, Nguyen KT et al (2001) Endogenous glucocorticoids play a positive regulatory role in the anti-keyhole limpet hemocyanin in vivo antibody response. J Immunol 166:3813–3819. https://doi.org/10.4049/jimmunol.166.6.3813

    Article  CAS  PubMed  Google Scholar 

  92. Ruben MD, Smith DF, FitzGerald GA, Hogenesch JB (2019) Dosing time matters. Science (80- ) 365. https://doi.org/10.1126/science.aax7621

  93. Turner-Warwick M (1989) Nocturnal asthma: a study in general practice. J R Coll Gen Pract 39:239

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Maidstone RJ, Turner J, Vetter C et al (2021) Night shift work is associated with an increased risk of asthma. Thorax 76:53–60. https://doi.org/10.1136/THORAXJNL-2020-215218

    Article  PubMed  Google Scholar 

  95. Durrington HJ, Gioan-Tavernier GO, Maidstone RJ, et al (2018) Time of day affects eosinophil biomarkers in asthma: implications for diagnosis and treatment. 101164/rccm201807–1289LE 198:1578–1581. https://doi.org/10.1164/RCCM.201807-1289LE

  96. Spadaro G, Giurato G, Stellato C et al (2020) Basophil degranulation in response to IgE ligation is controlled by a distinctive circadian clock in asthma. Allergy 75:158–168. https://doi.org/10.1111/ALL.14002

    Article  CAS  PubMed  Google Scholar 

  97. Christ P, Sowa AS, Froy O, Lorentz A (2018) The circadian clock drives mast cell functions in allergic reactions. Front Immunol 9:1526. https://doi.org/10.3389/FIMMU.2018.01526

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang R, Murray CS, Fowler SJ, et al Asthma diagnosis: into the fourth dimension State of the art review. https://doi.org/10.1136/thoraxjnl-2020-216421

  99. Beam WR, Weiner DE, Martin RJ (1992) Timing of prednisone and alterations of airways inflammation in nocturnal asthma. Am Rev Respir Dis 146:1524–1530. https://doi.org/10.1164/AJRCCM/146.6.1524

    Article  CAS  PubMed  Google Scholar 

  100. Buttgereit F, Smolen JS, Coogan AN, Cajochen C (2015) Clocking in: chronobiology in rheumatoid arthritis. Nat Rev Rheumatol 2015 116 11:349–356. https://doi.org/10.1038/nrrheum.2015.31

  101. Cutolo M, Straub RH, Buttgereit F (2008) Circadian rhythms of nocturnal hormones in rheumatoid arthritis: translation from bench to bedside. Ann Rheum Dis 67:905–908. https://doi.org/10.1136/ARD.2008.088955

    Article  CAS  PubMed  Google Scholar 

  102. Arvidson NG, Gudbjornsson B, Larsson A, Hallgren R (1997) The timing of glucocorticoid administration in rheumatoid arthritis. Ann Rheum Dis 56:27. https://doi.org/10.1136/ARD.56.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buttgereit F, Doering G, Schaeffler A et al (2008) Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): a double-blind, randomised controlled trial. Lancet 371:205–214. https://doi.org/10.1016/S0140-6736(08)60132-4

    Article  CAS  PubMed  Google Scholar 

  104. Spies CM, Cutolo M, Straub RH et al (2010) More night than day — circadian rhythms in polymyalgia rheumatica and ankylosing spondylitis. J Rheumatol 37:894–899. https://doi.org/10.3899/JRHEUM.091283

    Article  PubMed  Google Scholar 

  105. Glass-Marmor L, Paperna T, Galboiz Y, Miller A (2009) Immunomodulation by chronobiologically-based glucocorticoids treatment for multiple sclerosis relapses. https://doi.org/10.1016/j.jneuroim.2009.03.004

  106. Spies CM, Straub RH, Cutolo M, Buttgereit F (2014) Circadian rhythms in rheumatology - a glucocorticoid perspective. Arthritis Res Ther 16:S3. https://doi.org/10.1186/AR4687

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

DWR: MRC programme grant MR/P023576/1; Wellcome Trust (107849/Z/15/Z). IO, HO: DFG (RTG-1957 & OS353-10/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Oster.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

This article is a contribution to the special issue on: Chronoimmunology: from preclinical assessments to clinical applications - Guest Editors: Henrik Oster and David Ray

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olejniczak, I., Oster, H. & Ray, D.W. Glucocorticoid circadian rhythms in immune function. Semin Immunopathol 44, 153–163 (2022). https://doi.org/10.1007/s00281-021-00889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-021-00889-2

Keywords

Navigation