Skip to main content

Advertisement

Log in

AHR signaling in the development and function of intestinal immune cells and beyond

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The intestinal immune system is challenged daily with the task of recognizing and eliminating pathogens while simultaneously tolerating dietary and commensal antigens. All components must effectively coordinate to differentiate a continual barrage of environmental cues and mount appropriate responses dependent on the nature of the stimuli encountered. Playing a pivotal role, the aryl hydrocarbon receptor (AHR) is a chemical sensor that detects both dietary and microbial cues and is important for development, maintenance, and function of several types of intestinal immune cells, particularly innate lymphoid cells (ILCs) and T cells. In this review, we will highlight recent advances in our knowledge of the role of AHR signaling in ILCs, T cells, B cells, and dendritic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561

    Article  PubMed  CAS  Google Scholar 

  2. McIntosh BE, Hogenesch JB, Bradfield CA (2010) Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu Rev Physiol 72:625–645

    Article  PubMed  CAS  Google Scholar 

  3. Kewley RJ, Whitelaw ML, Chapman-Smith A (2004) The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36:189–204

    Article  PubMed  CAS  Google Scholar 

  4. Frericks M, Meissner M, Esser C (2007) Microarray analysis of the AHR system: tissue-specific flexibility in signal and target genes. Toxicol Appl Pharmacol 220:320–332

    Article  PubMed  CAS  Google Scholar 

  5. Perdew GH (1988) Association of the Ah receptor with the 90-kDa heat shock protein. J Biol Chem 263:13802–13805

    PubMed  CAS  Google Scholar 

  6. Carver LA, Bradfield CA (1997) Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J Biol Chem 272:11452–11456

    Article  PubMed  CAS  Google Scholar 

  7. Meyer BK, Pray-Grant MG, Vanden Heuvel JP, Perdew GH (1998) Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol Cell Biol 18:978–988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF (1996) A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1:237–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. McGuire J, Whitelaw ML, Pongratz I, Gustafsson JA, Poellinger L (1994) A cellular factor stimulates ligand-dependent release of hsp90 from the basic helix-loop-helix dioxin receptor. Mol Cell Biol 14:2438–2446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fukunaga BN, Probst MR, Reisz-Porszasz S, Hankinson O (1995) Identification of functional domains of the aryl hydrocarbon receptor. J Biol Chem 270:29270–29278

    Article  PubMed  CAS  Google Scholar 

  11. Schiering C, Vonk A, Das S, Stockinger B, Wincent E (2018) Cytochrome P4501-inhibiting chemicals amplify aryl hydrocarbon receptor activation and IL-22 production in T helper 17 cells. Biochem Pharmacol 151:47–58

    Article  PubMed  CAS  Google Scholar 

  12. Schiering C, Wincent E, Metidji A, Iseppon A, Li Y, Potocnik AJ, Omenetti S, Henderson CJ, Wolf CR, Nebert DW, Stockinger B (2017) Feedback control of AHR signalling regulates intestinal immunity. Nature 542:242–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH (2014) The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 32:403–432

    Article  PubMed  CAS  Google Scholar 

  14. Mandal PK (2005) Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J Comp Physiol B 175:221–230

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116

    Article  PubMed  CAS  Google Scholar 

  16. Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    Article  PubMed  CAS  Google Scholar 

  17. Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci U S A 88:9543–9547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang S, Qin C, Safe SH (2003) Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context. Environ Health Perspect 111:1877–1882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Takamura T, Harama D, Fukumoto S, Nakamura Y, Shimokawa N, Ishimaru K, Ikegami S, Makino S, Kitamura M, Nakao A (2011) Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis. Immunol Cell Biol 89:817–822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385

    Article  PubMed  CAS  Google Scholar 

  21. Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M (2017) Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357:806–810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, Brot L, Taleb S, Couturier-Maillard A, Nion-Larmurier I, Merabtene F, Seksik P, Bourrier A, Cosnes J, Ryffel B, Beaugerie L, Launay JM, Langella P, Xavier RJ, Sokol H (2016) CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 22:598–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sonowal R, Swimm A, Sahoo A, Luo L, Matsunaga Y, Wu Z, Bhingarde JA, Ejzak EA, Ranawade A, Qadota H, Powell DN, Capaldo CT, Flacker JM, Jones RM, Benian GM, Kalman D (2017) Indoles from commensal bacteria extend healthspan. Proc Natl Acad Sci U S A 114:E7506–E7E15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Moura-Alves P, Faé K, Houthuys E, Dorhoi A, Kreuchwig A, Furkert J, Barison N, Diehl A, Munder A, Constant P, Skrahina T, Guhlich-Bornhof U, Klemm M, Koehler AB, Bandermann S, Goosmann C, Mollenkopf HJ, Hurwitz R, Brinkmann V, Fillatreau S, Daffe M, Tümmler B, Kolbe M, Oschkinat H, Krause G, Kaufmann SH (2014) AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512:387–392

    Article  PubMed  CAS  Google Scholar 

  25. Gaitanis G, Magiatis P, Stathopoulou K, Bassukas ID, Alexopoulos EC, Velegraki A, Skaltsounis AL (2008) AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J Invest Dermatol 128:1620–1625

    Article  PubMed  CAS  Google Scholar 

  26. Magiatis P, Pappas P, Gaitanis G, Mexia N, Melliou E, Galanou M, Vlachos C, Stathopoulou K, Skaltsounis AL, Marselos M, Velegraki A, Denison MS, Bassukas ID (2013) Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (dioxin) receptor detected in diseased human skin. J Invest Dermatol 133:2023–2030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Seok SH, Ma ZX, Feltenberger JB, Chen H, Scarlett C, Lin Z, Satyshur KA, Cortopassi M, Jefcoate CR, Ge Y, Tang W, Bradfield CA, Xing Y (2018) Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). J Biol Chem 293(6):1994–2005

    Article  PubMed  CAS  Google Scholar 

  29. Rannug U, Rannug A, Sjöberg U, Li H, Westerholm R, Bergman J (1995) Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol 2:841–845

    Article  PubMed  CAS  Google Scholar 

  30. Smirnova A, Wincent E, Vikström Bergander L, Alsberg T, Bergman J, Rannug A, Rannug U (2016) Evidence for new light-independent pathways for generation of the endogenous aryl hydrocarbon receptor agonist FICZ. Chem Res Toxicol 29:75–86

    Article  PubMed  CAS  Google Scholar 

  31. Diefenbach A, Colonna M, Koyasu S (2014) Development, differentiation, and diversity of innate lymphoid cells. Immunity 41:354–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Diefenbach A, Colonna M, Romagnani C (2017) The ILC world revisited. Immunity 46:327–332

    Article  PubMed  CAS  Google Scholar 

  33. Cortez VS, Robinette ML, Colonna M (2015) Innate lymphoid cells: new insights into function and development. Curr Opin Immunol 32:71–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ebihara T, Song C, Ryu SH, Plougastel-Douglas B, Yang L, Levanon D, Groner Y, Bern MD, Stappenbeck TS, Colonna M, Egawa T, Yokoyama WM (2015) Runx3 specifies lineage commitment of innate lymphoid cells. Nat Immunol 16:1124–1133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li S, Heller JJ, Bostick JW, Lee A, Schjerven H, Kastner P, Chan S, Chen ZE, Zhou L (2016) Ikaros inhibits group 3 innate lymphoid cell development and function by suppressing the aryl hydrocarbon receptor pathway. Immunity 45:185–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD, Colonna M (2011) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13:144–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, Diefenbach A (2011) Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334:1561–1565

    Article  PubMed  CAS  Google Scholar 

  38. Hughes T, Briercheck EL, Freud AG, Trotta R, McClory S, Scoville SD, Keller K, Deng Y, Cole J, Harrison N, Mao C, Zhang J, Benson DM, Yu J, Caligiuri MA (2014) The transcription factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep 8:150–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Shin JH, Zhang L, Murillo-Sauca O, Kim J, Kohrt HE, Bui JD, Sunwoo JB (2013) Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 110:12391–12396

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wagage S, John B, Krock BL, Hall AO, Randall LM, Karp CL, Simon MC, Hunter CA (2014) The aryl hydrocarbon receptor promotes IL-10 production by NK cells. J Immunol 192:1661–1670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX, Zhou L (2012) The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36:92–104

    Article  PubMed  CAS  Google Scholar 

  42. Qiu J, Guo X, Chen ZM, He L, Sonnenberg GF, Artis D, Fu YX, Zhou L (2013) Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39:386–399

    Article  PubMed  CAS  Google Scholar 

  43. Wagage S, Harms Pritchard G, Dawson L, Buza EL, Sonnenberg GF, Hunter CA (2015) The group 3 innate lymphoid cell defect in aryl hydrocarbon receptor deficient mice is associated with T cell hyperactivation during intestinal infection. PLoS One 10:e0128335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Funatake CJ, Marshall NB, Steppan LB, Mourich DV, Kerkvliet NI (2005) Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells. J Immunol 175:4184–4188

    Article  PubMed  CAS  Google Scholar 

  45. Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL, Kuchroo VK (2010) The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol 11:854–861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mascanfroni ID, Takenaka MC, Yeste A, Patel B, Wu Y, Kenison JE, Siddiqui S, Basso AS, Otterbein LE, Pardoll DM, Pan F, Priel A, Clish CB, Robson SC, Quintana FJ (2015) Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat Med 21:638–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ehrlich AK, Pennington JM, Tilton S, Wang X, Marshall NB, Rohlman D, Funatake C, Punj S, O'Donnell E, Yu Z, Kolluri SK, Kerkvliet NI (2017) AhR activation increases IL-2 production by alloreactive CD4+ T cells initiating the differentiation of mucosal-homing Tim3+ Lag3+ Tr1 cells. Eur J Immunol 47:1989–2001

    Article  PubMed  CAS  Google Scholar 

  48. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

    Article  PubMed  CAS  Google Scholar 

  49. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  PubMed  CAS  Google Scholar 

  50. Veldhoen M, Hirota K, Christensen J, O'Garra A, Stockinger B (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206:43–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2009) Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med 206:2027–2035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Rutz S, Noubade R, Eidenschenk C, Ota N, Zeng W, Zheng Y, Hackney J, Ding J, Singh H, Ouyang W (2011) Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in T(H)17 cells. Nat Immunol 12:1238–1245

    Article  PubMed  CAS  Google Scholar 

  53. Ehrlich AK, Pennington JM, Bisson WH, Kolluri SK, Kerkvliet NI (2018) TCDD, FICZ, and other high affinity AhR ligands dose-dependently determine the fate of CD4+ T cell differentiation. Toxicol Sci 161(2):310–320

    Article  PubMed  Google Scholar 

  54. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147:629–640

    Article  PubMed  CAS  Google Scholar 

  55. Konkel JE, Maruyama T, Carpenter AC, Xiong Y, Zamarron BF, Hall BE, Kulkarni AB, Zhang P, Bosselut R, Chen W (2011) Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat Immunol 12:312–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R, Naoe Y, Reis BS, Huang Y, Lambolez F, Docherty M, Attinger A, Shui JW, Kim G, Lena CJ, Sakaguchi S, Miyamoto C, Wang P, Atarashi K, Park Y, Nakayama T, Honda K, Ellmeier W, Kronenberg M, Taniuchi I, Cheroutre H (2013) Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol 14:281–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Reis BS, Rogoz A, Costa-Pinto FA, Taniuchi I, Mucida D (2013) Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat Immunol 14:271–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hauben E, Gregori S, Draghici E, Migliavacca B, Olivieri S, Woisetschläger M, Roncarolo MG (2008) Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood 112:1214–1222

    Article  PubMed  CAS  Google Scholar 

  59. Lawrence BP, Denison MS, Novak H, Vorderstrasse BA, Harrer N, Neruda W, Reichel C, Woisetschläger M (2008) Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound. Blood 112:1158–1165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jurado-Manzano BB, Zavala-Reyes D, Turrubiartes-Martínez EA, Portales-Pérez DP, González-Amaro R, Layseca-Espinosa E (2017) FICZ generates human tDCs that induce CD4+ CD25high Foxp3+ Treg-like cell differentiation. Immunol Lett 190:84–92

    Article  PubMed  CAS  Google Scholar 

  61. Kado S, Chang WLW, Chi AN, Wolny M, Shepherd DM, Vogel CFA (2017) Aryl hydrocarbon receptor signaling modifies Toll-like receptor-regulated responses in human dendritic cells. Arch Toxicol 91:2209–2221

    Article  PubMed  CAS  Google Scholar 

  62. Platzer B, Richter S, Kneidinger D, Waltenberger D, Woisetschläger M, Strobl H (2009) Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. J Immunol 183:66–74

    Article  PubMed  CAS  Google Scholar 

  63. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR, Flaveny CA, Perdew GH, Denison MS, Schultz PG, Cooke MP (2010) Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329:1345–1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Thordardottir S, Hangalapura BN, Hutten T, Cossu M, Spanholtz J, Schaap N, Radstake TR, van der Voort R, Dolstra H (2014) The aryl hydrocarbon receptor antagonist StemRegenin 1 promotes human plasmacytoid and myeloid dendritic cell development from CD34+ hematopoietic progenitor cells. Stem Cells Dev 23:955–967

    Article  PubMed  CAS  Google Scholar 

  65. Goudot C, Coillard A, Villani AC, Gueguen P, Cros A, Sarkizova S, Tang-Huau TL, Bohec M, Baulande S, Hacohen N, Amigorena S, Segura E (2017) Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages. Immunity 47:582–96.e6

  66. Jux B, Kadow S, Esser C (2009) Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice. J Immunol 182:6709–6717

    Article  PubMed  CAS  Google Scholar 

  67. Liu H, Ramachandran I, Gabrilovich DI (2014) Regulation of plasmacytoid dendritic cell development in mice by aryl hydrocarbon receptor. Immunol Cell Biol 92:200–203

    Article  PubMed  CAS  Google Scholar 

  68. Quintana FJ, Murugaiyan G, Farez MF, Mitsdoerffer M, Tukpah AM, Burns EJ, Weiner HL (2010) An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 107:20768–20773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F (2008) Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 375:331–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A 107:19961–19966

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sulentic CE, Kaminski NE (2011) The long winding road toward understanding the molecular mechanisms for B-cell suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 120(Suppl 1):S171–S191

    Article  PubMed  CAS  Google Scholar 

  73. Allan LL, Sherr DH (2005) Constitutive activation and environmental chemical induction of the aryl hydrocarbon receptor/transcription factor in activated human B lymphocytes. Mol Pharmacol 67:1740–1750

    Article  PubMed  CAS  Google Scholar 

  74. Tanaka G, Kanaji S, Hirano A, Arima K, Shinagawa A, Goda C, Yasunaga S, Ikizawa K, Yanagihara Y, Kubo M, Kuriyama-Fujii Y, Sugita Y, Inokuchi A, Izuhara K (2005) Induction and activation of the aryl hydrocarbon receptor by IL-4 in B cells. Int Immunol 17:797–805

    Article  PubMed  CAS  Google Scholar 

  75. Villa M, Gialitakis M, Tolaini M, Ahlfors H, Henderson CJ, Wolf CR, Brink R, Stockinger B (2017) Aryl hydrocarbon receptor is required for optimal B-cell proliferation. EMBO J 36:116–128

    Article  PubMed  CAS  Google Scholar 

  76. Inoue H, Mishima K, Yamamoto-Yoshida S, Ushikoshi-Nakayama R, Nakagawa Y, Yamamoto K, Ryo K, Ide F, Saito I (2012) Aryl hydrocarbon receptor-mediated induction of EBV reactivation as a risk factor for Sjögren’s syndrome. J Immunol 188:4654–4662

    Article  PubMed  CAS  Google Scholar 

  77. Yoshida T, Katsuya K, Oka T, Koizumi S, Wakita D, Kitamura H, Nishimura T (2012) Effects of AhR ligands on the production of immunoglobulins in purified mouse B cells. Biomed Res 33:67–74

    Article  PubMed  CAS  Google Scholar 

  78. Phadnis-Moghe AS, Li J, Crawford RB, Kaminski NE (2016) SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Appl Pharmacol 310:41–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kovalova N, Manzan M, Crawford R, Kaminski N (2016) Role of aryl hydrocarbon receptor polymorphisms on TCDD-mediated CYP1B1 induction and IgM suppression by human B cells. Toxicol Appl Pharmacol 309:15–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Marina Cella and Susan Gilfillan for their suggestions.

Funding

This work was supported by the Rainin Foundation, NIH grants U01 AI095542 and DK103039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Colonna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on Innate Lymphoid Cells in Inflammation and Immunity - Guest Editors: Jan-Eric Turner and Georg Gasteiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervantes-Barragan, L., Colonna, M. AHR signaling in the development and function of intestinal immune cells and beyond. Semin Immunopathol 40, 371–377 (2018). https://doi.org/10.1007/s00281-018-0694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-018-0694-9

Keywords

Navigation