Skip to main content

Advertisement

Log in

Dietary and metabolic modulators of hepatic immunity

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The liver is the central metabolic organ of the organism and is thus constantly exposed to gut-derived dietary and microbial antigens. The liver maintains homoeostatic tolerance to these mostly harmless antigens. However, the liver also functions as a barrier organ to harmful pathogens and is thus permissive to liver inflammation. The regulation of the delicate balance between liver tolerance and liver inflammation is of vital importance for the organism. In recent years, a general role for dietary components and metabolites as immune mediators has been emerging. However, although the liver is exposed to a great deal of metabolic mediators, surprisingly, little is known about their actual role in the regulation of hepatic immune responses. Here, we will explore the possible impacts of metabolic mediators for homoeostatic and pathological immunity in the liver, by highlighting selected examples of metabolic immune regulation in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS (1985) The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5:683–692

    Article  CAS  PubMed  Google Scholar 

  2. Balmer ML, Slack E, de Gottardi A, Lawson MA, Hapfelmeier S, Miele L, Grieco A, Van Vlierberghe H, Fahrner R, Patuto N, Bernsmeier C, Ronchi F, Wyss M, Stroka D, Dickgreber N, Heim MH, McCoy KD, Macpherson AJ (2014) The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med 6:237ra66

    Article  PubMed  CAS  Google Scholar 

  3. Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14:996–1006

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Jiang G, Yang HR, Gu X, Wang L, Hsieh CC, Chou HS, Fung JJ, Qian S, Lu L (2009) Distinct response of liver myeloid dendritic cells to endotoxin is mediated by IL-27. J Hepatol 51:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Uhrig A, Banafsche R, Kremer M, Hegenbarth S, Hamann A, Neurath M, Gerken G, Limmer A, Knolle PA (2005) Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J Leukoc Biol 77:626–633

    Article  CAS  PubMed  Google Scholar 

  6. Knolle PA, Löser E, Protzer U, Duchmann R, Schmitt E, Zum Büschenfelde KH, Rose-John S, Gerken G (1997) Regulation of endotoxin-induced IL-6 production in liver sinusoidal endothelial cells and Kupffer cells by IL-10. Clin Exp Immunol 107:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  8. Thomson AW, Knolle PA (2010) Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10:753–766

    Article  CAS  PubMed  Google Scholar 

  9. Robinson MW, Harmon C, O'Farrelly C (2016) Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 13:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62

    Article  CAS  PubMed  Google Scholar 

  11. You Q, Cheng L, Kedl RM, Ju C (2008) Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48:978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knolle PA, Uhrig A, Protzer U, Trippler M, Duchmann R, Meyer zum Büschenfelde KH, Gerken G (1998) Interleukin-10 expression is autoregulated at the transcriptional level in human and murine Kupffer cells. Hepatology 27:93–99

    Article  CAS  PubMed  Google Scholar 

  13. Bissell DM, Wang SS, Jarnagin WR, Roll FJ (1995) Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest 96:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Breous E, Somanathan S, Vandenberghe LH, Wilson JM (2009) Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 50:612–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heymann F, Peusquens J, Ludwig-Portugall I, Kohlhepp M, Ergen C, Niemietz P, Martin C, van Rooijen N, Ochando JC, Randolph GJ, Luedde T, Ginhoux F, Kurts C, Trautwein C, Tacke F (2015) Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 62:279–291

    Article  CAS  PubMed  Google Scholar 

  16. Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM, van Rooijen N, Chaconas G, Kubes P (2010) An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sørensen KK, McCourt P, Berg T, Crossley C, Le Couteur D, Wake K, Smedsrød B (2012) The scavenger endothelial cell: a new player in homeostasis and immunity. Am J Physiol Regul Integr Comp Physiol 303:R1217–R1230

    Article  PubMed  CAS  Google Scholar 

  18. Ganesan LP, Kim J, Wu Y, Mohanty S, Phillips GS, Birmingham DJ, Robinson JM, Anderson CL (2012) FcγRIIb on liver sinusoidal endothelium clears small immune complexes. J Immunol 189:4981–4988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schölzel K, Schildberg FA, Welz M, Börner C, Geiger S, Kurts C, Heikenwälder M, Knolle PA, Wohlleber D (2014) Transfer of MHC-class-I molecules among liver sinusoidal cells facilitates hepatic immune surveillance. J Hepatol 61:600–608

    Article  PubMed  CAS  Google Scholar 

  20. Carambia A, Herkel J (2014) Liver sinusoidal cells collecting MHC-I molecules: you can’t get enough of a good thing. J Hepatol 61:464–465

    Article  PubMed  Google Scholar 

  21. Lohse AW, Knolle PA, Bilo K, Uhrig A, Waldmann C, Ibe M, Schmitt E, Gerken G, Meyer zum Büschenfelde KH (1996) Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 110:1175–1181

    Article  CAS  PubMed  Google Scholar 

  22. Schurich A, Böttcher JP, Burgdorf S, Penzler P, Hegenbarth S, Kern M, Dolf A, Endl E, Schultze J, Wiertz E, Stabenow D, Kurts C, Knolle P (2009) Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology 50:909–919

    Article  CAS  PubMed  Google Scholar 

  23. Knolle PA, Schmitt E, Jin S, Germann T, Duchmann R, Hegenbarth S, Gerken G, Lohse AW (1999) Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 116:1428–1440

    Article  CAS  PubMed  Google Scholar 

  24. Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA (2008) Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47:296–305

    Article  CAS  PubMed  Google Scholar 

  25. Carambia A, Frenzel C, Bruns OT, Schwinge D, Reimer R, Hohenberg H, Huber S, Tiegs G, Schramm C, Lohse AW, Herkel J (2013) Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. J Hepatol 58:112–118

    Article  CAS  PubMed  Google Scholar 

  26. Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, Momburg F, Arnold B, Knolle PA (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6:1348–1354

    Article  CAS  PubMed  Google Scholar 

  27. Carambia A, Freund B, Schwinge D, Heine M, Laschtowitz A, Huber S, Wraith DC, Korn T, Schramm C, Lohse AW, Heeren J, Herkel J (2014) TGF-β-dependent induction of CD4+ CD25+ Foxp3+ Tregs by liver sinusoidal endothelial cells. J Hepatol 61:594–599

    Article  CAS  PubMed  Google Scholar 

  28. Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13

    Article  CAS  PubMed  Google Scholar 

  29. Carambia A, Freund B, Schwinge D, Bruns OT, Salmen SC, Ittrich H, Reimer R, Heine M, Huber S, Waurisch C, Eychmüller A, Wraith DC, Korn T, Nielsen P, Weller H, Schramm C, Lüth S, Lohse AW, Heeren J, Herkel J (2015) Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. J Hepatol 62:1349–1356

    Article  CAS  PubMed  Google Scholar 

  30. Kern M, Popov A, Scholz K, Schumak B, Djandji D, Limmer A, Eggle D, Sacher T, Zawatzky R, Holtappels R, Reddehase MJ, Hartmann G, Debey-Pascher S, Diehl L, Kalinke U, Koszinowski U, Schultze J, Knolle PA (2010) Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology 138:336–346

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Jiang M, Ma Z, Dietze KK, Zelinskyy G, Yang D, Dittmer U, Schlaak JF, Roggendorf M, Lu M (2013) TLR1/2 ligand-stimulated mouse liver endothelial cells secrete IL-12 and trigger CD8+ T cell immunity in vitro. J Immunol 191:6178–6190

    Article  CAS  PubMed  Google Scholar 

  32. Wohlleber D, Kashkar H, Gärtner K, Frings MK, Odenthal M, Hegenbarth S, Börner C, Arnold B, Hämmerling G, Nieswandt B, van Rooijen N, Limmer A, Cederbrant K, Heikenwalder M, Pasparakis M, Protzer U, Dienes HP, Kurts C, Krönke M, Knolle PA (2012) TNF-induced target cell killing by CTL activated through cross-presentation. Cell Rep 2:478–487

    Article  CAS  PubMed  Google Scholar 

  33. Böttcher JP, Schanz O, Wohlleber D, Abdullah Z, Debey-Pascher S, Staratschek-Jox A, Höchst B, Hegenbarth S, Grell J, Limmer A, Atreya I, Neurath MF, Busch DH, Schmitt E, van Endert P, Kolanus W, Kurts C, Schultze JL, Diehl L, Knolle PA (2013) Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity. Cell Rep 3:779–795

    Article  PubMed  CAS  Google Scholar 

  34. Ganguly D, Haak S, Sisirak V, Reizis B (2013) The role of dendritic cells in autoimmunity. Nat Rev Immunol 13:566–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carambia A, Herkel J (2010) CD4 T cells in hepatic immune tolerance. J Autoimmun 34:23–28

    Article  CAS  PubMed  Google Scholar 

  37. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde KH, Gerken G (1995) Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 22:226–229

    Article  CAS  PubMed  Google Scholar 

  38. Schon HT, Weiskirchen R (2014) Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surg Nutr 3:386–406

    PubMed  PubMed Central  Google Scholar 

  39. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003) L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24:302–306

    Article  CAS  PubMed  Google Scholar 

  40. Quintana FJ (2014) LeA(H)Rning self-control. Cell Res 24:1155–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cantor HM, Dumont AE (1967) Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 245:744–745

    Article  Google Scholar 

  42. Calne RY, Sells RA, Pena JR, Davis DR, Millard PR, Herbertson BM, Binns RM, Davies DA (1969) Induction of immunological tolerance by porcine liver allografts. Nature 223:472–476

    Article  CAS  PubMed  Google Scholar 

  43. Sriwatanawongsa V, Davies HS, Calne RY (1995) The essential roles of parenchymal tissues and passenger leukocytes in the tolerance induced by liver grafting in rats. Nat Med 1:428–432

    Article  CAS  PubMed  Google Scholar 

  44. Lüth S, Huber S, Schramm C, Buch T, Zander S, Stadelmann C, Brück W, Wraith DC, Herkel J, Lohse AW (2008) Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J Clin Invest 118:3403–3410

    PubMed  PubMed Central  Google Scholar 

  45. Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147:765–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Knolle PA, Thimme R (2014) Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 146:1193–1207

    Article  CAS  PubMed  Google Scholar 

  47. Huang LR, Wohlleber D, Reisinger F, Jenne CN, Cheng RL, Abdullah Z, Schildberg FA, Odenthal M, Dienes HP, van Rooijen N, Schmitt E, Garbi N, Croft M, Kurts C, Kubes P, Protzer U, Heikenwalder M, Knolle PA (2013) Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nat Immunol 14:574–583

    Article  CAS  PubMed  Google Scholar 

  48. Jones GW, Jones SA (2016) Ectopic lymphoid follicles: inducible centres for generating antigen-specific immune responses within tissues. Immunology 147:141–151

    Article  CAS  PubMed  Google Scholar 

  49. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84

    Article  PubMed  Google Scholar 

  50. Petro TM, Bhattacharjee JK (1981) Effect of dietary essential amino acid limitations upon the susceptibility to Salmonella typhimurium and the effect upon humoral and cellular immune responses in mice. Infect Immun 32:251–259

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsukishiro T, Shimizu Y, Higuchi K, Watanabe A (2000) Effect of branched-chain amino acids on the composition and cytolytic activity of liver-associated lymphocytes in rats. J Gastroenterol Hepatol 15:849–859

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura I, Ochiai K, Imai Y, Moriyasu F, Imawari M (2007) Restoration of innate host defense responses by oral supplementation of branched-chain amino acids in decompensated cirrhotic patients. Hepatol Res 37:1062–1067

    Article  CAS  PubMed  Google Scholar 

  53. Barnes PF, Arevalo C, Chan LS, Wong SF, Reynolds TB (1988) A prospective evaluation of bacteremic patients with chronic liver disease. Hepatology 8:1099–1103

    Article  CAS  PubMed  Google Scholar 

  54. Nakamura I (2014) Impairment of innate immune responses in cirrhotic patients and treatment by branched-chain amino acids. World J Gastroenterol 20:7298–7305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Navarro LA, Wree A, Povero D, Berk MP, Eguchi A, Ghosh S, Papouchado BG, Erzurum SC, Feldstein AE (2015) Arginase 2 deficiency results in spontaneous steatohepatitis: a novel link between innate immune activation and hepatic de novo lipogenesis. J Hepatol 62:412–420

    Article  CAS  PubMed  Google Scholar 

  56. Liu C, Rajapakse AG, Riedo E, Fellay B, Bernhard MC, Montani JP, Yang Z, Ming XF (2016) Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation. Sci Rep 6:20405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scheja L, Kluwe J (2015) Arginine and NASH—do macrophages deliver the first hit? J Hepatol 62:260–261

    Article  CAS  PubMed  Google Scholar 

  58. Bhatt S, Qin J, Bennett C, Qian S, Fung JJ, Hamilton TA, Lu L (2014) All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function. J Immunol 192:5098–5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stone TW, Stoy N, Darlington LG (2013) An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci 34:136–143

    Article  CAS  PubMed  Google Scholar 

  60. Ito H, Hoshi M, Ohtaki H, Taguchi A, Ando K, Ishikawa T, Osawa Y, Hara A, Moriwaki H, Saito K, Seishima M (2010) Ability of IDO to attenuate liver injury in alpha-galactosylceramide-induced hepatitis model. J Immunol 185:4554–4560

    Article  CAS  PubMed  Google Scholar 

  61. Ogiso H, Ito H, Ando T, Arioka Y, Kanbe A, Ando K, Ishikawa T, Saito K, Hara A, Moriwaki H, Shimizu M, Seishima M (2016) The deficiency of indoleamine 2,3-dioxygenase aggravates the CCl4-induced liver fibrosis in mice. PLoS One 11:e0162183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cho NE, Bang BR, Gurung P, Li M, Clemens DL, Underhill TM, James LP, Chase JR, Saito T (2016) Retinoid regulation of antiviral innate immunity in hepatocytes. Hepatology 63:1783–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kitson MT, Roberts SK (2012) D-livering the message: the importance of vitamin D status in chronic liver disease. J Hepatol 57:897–909

    Article  CAS  PubMed  Google Scholar 

  64. Kwok RM, Torres DM, Harrison SA (2013) Vitamin D and nonalcoholic fatty liver disease (NAFLD): is it more than just an association? Hepatology 58:1166–1174

    Article  CAS  PubMed  Google Scholar 

  65. Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40:833–842

    Article  CAS  PubMed  Google Scholar 

  66. Willemsen LE, Koetsier MA, van Deventer SJ, van Tol EA (2003) Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52:1442–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, Comerma L, Huang B, Blander JM, Xiong H, Mayer L, Berin C, Augenlicht LH, Velcich A, Cerutti A (2013) Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bellanti F, Villani R, Facciorusso A, Vendemiale G, Serviddio G (2017) Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis. Free Radic Biol Med 111:173–185

    Article  CAS  PubMed  Google Scholar 

  69. Pakula MM, Maier TJ, Vorup-Jensen T (2017) Insight on the impacts of free amino acids and their metabolites on the immune system from a perspective of inborn errors of amino acid metabolism. Expert Opin Ther Targets 21:611–626

    Article  CAS  PubMed  Google Scholar 

  70. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  CAS  PubMed  Google Scholar 

  71. Le Floc’h N, Otten W, Merlot E (2011) Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41:1195–1205

    Article  PubMed  CAS  Google Scholar 

  72. Quintana FJ, Sherr DH (2013) Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 65:1148–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Meglio P, Duarte JH, Ahlfors H, Owens ND, Li Y, Villanova F, Tosi I, Hirota K, Nestle FO, Mrowietz U, Gilchrist MJ, Stockinger B (2014) Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40:989–1001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Katt J, Schwinge D, Schoknecht T, Quaas A, Sobottka I, Burandt E, Becker C, Neurath MF, Lohse AW, Herkel J, Schramm C (2013) Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 58:1084–1093

    Article  CAS  PubMed  Google Scholar 

  76. Sebode M, Peiseler M, Franke B, Schwinge D, Schoknecht T, Wortmann F, Quaas A, Petersen BS, Ellinghaus E, Baron U, Olek S, Wiegard C, Weiler-Normann C, Lohse AW, Herkel J, Schramm C (2014) Reduced FOXP3(+) regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms. J Hepatol 60:1010–1016

    Article  CAS  PubMed  Google Scholar 

  77. Lahvis GP, Bradfield CA (1998) Ahr null alleles: distinctive or different? Biochem Pharmacol 56:781–787

    Article  CAS  PubMed  Google Scholar 

  78. Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS, Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonzalez FJ (1995) Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–726

    Article  CAS  PubMed  Google Scholar 

  79. Fernandez-Salguero PM, Ward JM, Sundberg JP, Gonzalez FJ (1997) Lesions of aryl-hydrocarbon receptor-deficient mice. Vet Pathol 34:605–614

    Article  CAS  PubMed  Google Scholar 

  80. Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2009) Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med 206:2027–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu C, Fuchs CD, Halilbasic E, Trauner M (2016) Bile acids in regulation of inflammation and immunity: friend or foe? Clin Exp Rheumatol 34:25–31

    PubMed  Google Scholar 

  83. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152:1679–1694

    Article  PubMed  CAS  Google Scholar 

  84. Allen K, Jaeschke H, Copple BL (2011) Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 178:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Iwata M, Harada K, Katayanagi K, Saito T, Kaneko S, Kobayashi K, Nakanuma Y (2003) Apoptosis of murine cultured biliary epithelial cells induced by glycochenodeoxycholic acid involves Fas receptor and its ligand. Hepatol Res 25:329–342

    Article  CAS  PubMed  Google Scholar 

  86. Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowich H, Chen J, Du C, Yin XM (2002) Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 277:26912–26920

    Article  CAS  PubMed  Google Scholar 

  87. Becker S, Reinehr R, Graf D, vom Dahl S, Häussinger D (2007) Hydrophobic bile salts induce hepatocyte shrinkage via NADPH oxidase activation. Cell Physiol Biochem 19:89–98

    Article  CAS  PubMed  Google Scholar 

  88. Adachi T, Kaminaga T, Yasuda H, Kamiya T, Hara H (2014) The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury. J Clin Biochem Nutr 54:129–135

    Article  CAS  PubMed  Google Scholar 

  89. Hisamoto S, Shimoda S, Harada K, Iwasaka S, Onohara S, Chong Y, Nakamura M, Bekki Y, Yoshizumi T, Ikegami T, Maehara Y, He XS, Gershwin ME, Akashi K (2016) Hydrophobic bile acids suppress expression of AE2 in biliary epithelial cells and induce bile duct inflammation in primary biliary cholangitis. J Autoimmun 75:150–160

    Article  CAS  PubMed  Google Scholar 

  90. Gujral JS, Liu J, Farhood A, Hinson JA, Jaeschke H (2004) Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 286:G499–G507

    Article  CAS  PubMed  Google Scholar 

  91. Cai SY, Ouyang X, Chen Y, Soroka CJ, Wang J, Mennone A, Wang Y, Mehal WZ, Jain D, Boyer JL (2017) Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2:e90780

    Article  PubMed  PubMed Central  Google Scholar 

  92. O'Brien KM, Allen KM, Rockwell CE, Towery K, Luyendyk JP, Copple BL (2013) IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am J Pathol 183:1498–1507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Licata LA, Nguyen CT, Burga RA, Falanga V, Espat NJ, Ayala A, Thorn M, Junghans RP, Katz SC (2013) Biliary obstruction results in PD-1-dependent liver T cell dysfunction and acute inflammation mediated by Th17 cells and neutrophils. J Leukoc Biol 94:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, Bowlus CL, Yang GX, Leung PS, Ansari AA, Wu L, Coppel RL, Gershwin ME (2014) IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 59:1944–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sung JJ, Go MY (1999) Reversible Kupffer cell suppression in biliary obstruction is caused by hydrophobic bile acids. J Hepatol 30:413–418

    Article  CAS  PubMed  Google Scholar 

  96. Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D (2008) Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 372:78–84

    Article  CAS  PubMed  Google Scholar 

  97. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Görg B, Selbach O, Häussinger D, Kubitz R (2007) The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45:695–704

    Article  CAS  PubMed  Google Scholar 

  98. McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, Adorini L, Golden-Mason L, Levi M, Rosen HR (2013) Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem 288:11761–11770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V, Kleinebrecht L, Schupp AK, Häussinger D, Graf D (2013) Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol 94:1253–1264

    Article  PubMed  CAS  Google Scholar 

  100. Biagioli M, Carino A, Cipriani S, Francisci D, Marchianò S, Scarpelli P, Sorcini D, Zampella A, Fiorucci S (2017) The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J Immunol 199:718–733

    Article  CAS  PubMed  Google Scholar 

  101. Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells(NF-κB) in mice. Hepatology 54:1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu C, Chen Y, Cai W, Wu J (2016) Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget 7:83951–83963

    PubMed  PubMed Central  Google Scholar 

  103. Huang W (2014) GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells. PLoS One 9:e93567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Calmus Y, Poupon R (2014) Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases. Clin Res Hepatol Gastroenterol 38:550–556

    Article  CAS  PubMed  Google Scholar 

  105. Bleier JI, Katz SC, Chaudhry UI, Pillarisetty VG, Kingham TP III, Shah AB, Raab JR, DeMatteo RP (2006) Biliary obstruction selectively expands and activates liver myeloid dendritic cells. J Immunol 176:7189–7195

    Article  CAS  PubMed  Google Scholar 

  106. Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT, Higuchi H, Matsuoka K, Watanabe M, Itoh H, Kanai T, Hisamatsu T, Hibi T (2012) Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136:153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, Klomp LW, Siersema PD, Schipper ME, Danese S, Penna G, Laverny G, Adorini L, Moschetta A, van Mil SW (2011) Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60:463–472

    Article  CAS  PubMed  Google Scholar 

  108. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W (2008) Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48:1632–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mencarelli A, Renga B, Migliorati M, Cipriani S, Distrutti E, Santucci L, Fiorucci S (2009) The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J Immunol 183:6657–6666

    Article  CAS  PubMed  Google Scholar 

  110. Wang YD, Chen WD, Li C, Guo C, Li Y, Qi H, Shen H, Kong J, Long X, Yuan F, Wang X, Huang W (2015) Farnesoid X receptor antagonizes JNK signaling pathway in liver carcinogenesis by activating SOD3. Mol Endocrinol 29:322–331

    Article  PubMed  CAS  Google Scholar 

  111. Worthmann A, John C, Rühlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, Heine M, Schlein C, Evangelakos I, Mineo C, Fischer M, Dandri M, Kremoser C, Scheja L, Franke A, Shaul PW, Heeren J (2017) Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med 23:839–849

    Article  CAS  PubMed  Google Scholar 

  112. Saeed A, Hoekstra M, Hoeke MO, Heegsma J, Faber KN (2017) The interrelationship between bile acid and vitamin A homeostasis. Biochim Biophys Acta 1862:496–512

    Article  CAS  PubMed  Google Scholar 

  113. Erkelens MN, Mebius RE (2017) Retinoic acid and immune homeostasis: a balancing act. Trends Immunol 38:168–180

    Article  CAS  PubMed  Google Scholar 

  114. Weiskirchen R, Tacke F (2014) Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr 3:344–363

    PubMed  PubMed Central  Google Scholar 

  115. Kanai M, Raz A, Goodman DS (1968) Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest 47:2025–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Derebe MG, Zlatkov CM, Gattu S, Ruhn KA, Vaishnava S, Diehl GE, MacMillan JB, Williams NS, Hooper LV (2014) Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection. elife 3:e03206

    Article  PubMed  PubMed Central  Google Scholar 

  117. Raverdeau M, Mills KH (2014) Modulation of T cell and innate immune responses by retinoic acid. J Immunol 192:2953–2958

    Article  CAS  PubMed  Google Scholar 

  118. Ongsakul M, Sirisinha S, Lamb AJ (1985) Impaired blood clearance of bacteria and phagocytic activity in vitamin A-deficient rats. Proc Soc Exp Biol Med 178:204–208

    Article  CAS  PubMed  Google Scholar 

  119. Bjelakovic G, Gluud LL, Nikolova D, Bjelakovic M, Nagorni A, Gluud C (2011) Antioxidant supplements for liver diseases. Cochrane Database Syst Rev 3:CD007749

    Google Scholar 

  120. Hewison M (2012) Vitamin D and immune function: an overview. Proc Nutr Soc 71:50–61

    Article  CAS  PubMed  Google Scholar 

  121. Penna G, Adorini L (2000) 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164:2405–2411

    Article  CAS  PubMed  Google Scholar 

  122. Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, Butcher EC (2007) DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol 8:285–293

    Article  CAS  PubMed  Google Scholar 

  123. Adams JS, Sharma OP, Gacad MA, Singer FR (1983) Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J Clin Invest 72:1856–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C (2006) Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone Miner Res 21:37–47

    Article  CAS  PubMed  Google Scholar 

  125. Fritsche J, Mondal K, Ehrnsperger A, Andreesen R, Kreutz M (2003) Regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3 by human dendritic cells. Blood 102:3314–3316

    Article  CAS  PubMed  Google Scholar 

  126. Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J, Zügel U, Steinmeyer A, Pollak A, Roth E, Boltz-Nitulescu G, Spittler A (2006) Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 36:361–370

    Article  CAS  PubMed  Google Scholar 

  127. Dickie LJ, Church LD, Coulthard LR, Mathews RJ, Emery P, McDermott MF (2010) Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford) 49:1466–1471

    Article  CAS  Google Scholar 

  128. Tabrizi R, Moosazadeh M, Lankarani KB, Akbari M, Heydari ST, Kolahdooz F, Samimi M, Asemi Z (2017) The effects of vitamin D supplementation on metabolic profiles and liver function in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr. https://doi.org/10.1016/j.dsx.2017.07.025

  129. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5:e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Alvarez-Curto E, Milligan G (2016) Metabolism meets immunity: the role of free fatty acid receptors in the immune system. Biochem Pharmacol 114:3–13

    Article  CAS  PubMed  Google Scholar 

  131. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  PubMed  Google Scholar 

  132. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450

    Article  CAS  PubMed  Google Scholar 

  133. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bassett SA, Barnett MP (2014) The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients 6:4273–4301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee JY, Hwang DH (2006) The modulation of inflammatory gene expression by lipids: mediation through Toll-like receptors. Mol Cells 21:174–185

    CAS  PubMed  Google Scholar 

  138. Ramadori P, Kroy D, Streetz KL (2015) Immunoregulation by lipids during the development of non-alcoholic steatohepatitis. Hepatobiliary Surg Nutr 4:11–23

    PubMed  PubMed Central  Google Scholar 

  139. Griffiths WJ, Abdel-Khalik J, Hearn T, Yutuc E, Morgan AH, Wang Y (2016) Current trends in oxysterol research. Biochem Soc Trans 44:652–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guillemot-Legris O, Mutemberezi V, Muccioli GG (2016) Oxysterols in metabolic syndrome: from bystander molecules to bioactive lipids. Trends Mol Med 22:594–614

    Article  CAS  PubMed  Google Scholar 

  141. Jakobsson T, Treuter E, Gustafsson JÅ, Steffensen KR (2012) Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 33:394–404

    Article  CAS  PubMed  Google Scholar 

  142. Traversari C, Sozzani S, Steffensen KR, Russo V (2014) LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. Eur J Immunol 44:1896–1903

    Article  CAS  PubMed  Google Scholar 

  143. Schulman IG (2017) Liver X receptors link lipid metabolism and inflammation. FEBS Lett. https://doi.org/10.1002/1873-3468.12702

  144. Wang YY, Dahle MK, Agren J, Myhre AE, Reinholt FP, Foster SJ, Collins JL, Thiemermann C, Aasen AO, Wang JE (2006) Activation of the liver X receptor protects against hepatic injury in endotoxemia by suppressing Kupffer cell activation. Shock 25:141–146

    Article  CAS  PubMed  Google Scholar 

  145. Geyeregger R, Zeyda M, Bauer W, Kriehuber E, Säemann MD, Zlabinger GJ, Maurer D, Stulnig TM (2007) Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood 109:4288–4295

    Article  CAS  PubMed  Google Scholar 

  146. Xing Y, Zhao T, Gao X, Wu Y (2016) Liver X receptor α is essential for the capillarization of liver sinusoidal endothelial cells in liver injury. Sci Rep 6:21309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7:e003

    PubMed  PubMed Central  Google Scholar 

  148. Trivedi PJ, Adams DH (2013) Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun 46:97–111

    Article  CAS  PubMed  Google Scholar 

  149. Soroosh P, Wu J, Xue X, Song J, Sutton SW, Sablad M, Yu J, Nelen MI, Liu X, Castro G, Luna R, Crawford S, Banie H, Dandridge RA, Deng X, Bittner A, Kuei C, Tootoonchi M, Rozenkrants N, Herman K, Gao J, Yang XV, Sachen K, Ngo K, Fung-Leung WP, Nguyen S, de Leon-Tabaldo A, Blevitt J, Zhang Y, Cummings MD, Rao T, Mani NS, Liu C, McKinnon M, Milla ME, Fourie AM, Sun S (2014) Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation. Proc Natl Acad Sci U S A 111:12163–12168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sensi C, Daniele S, Parravicini C, Zappelli E, Russo V, Trincavelli ML, Martini C, Abbracchio MP, Eberini I (2014) Oxysterols act as promiscuous ligands of class-A GPCRs: in silico molecular modeling and in vitro validation. Cell Signal 26:2614–2620

    Article  CAS  PubMed  Google Scholar 

  151. Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, Guerini D, Baumgarten BU, Roggo S, Wen B, Knochenmuss R, Noël S, Gessier F, Kelly LM, Vanek M, Laurent S, Preuss I, Miault C, Christen I, Karuna R, Li W, Koo DI, Suply T, Schmedt C, Peters EC, Falchetto R, Katopodis A, Spanka C, Roy MO, Detheux M, Chen YA, Schultz PG, Cho CY, Seuwen K, Cyster JG, Sailer AW (2011) Oxysterols direct immune cell migration via EBI2. Nature 475:524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sun S, Liu C (2015) 7α, 25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases. Front Pharmacol 6:60

    PubMed  PubMed Central  Google Scholar 

  153. Chiang EY, Johnston RJ, Grogan JL (2013) EBI2 is a negative regulator of type I interferons in plasmacytoid and myeloid dendritic cells. PLoS One 8:e83457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Konrad FM, Reutershan J (2012) CXCR2 in acute lung injury. Mediat Inflamm 2012:740987

    Article  CAS  Google Scholar 

  155. Van Sweringen HL, Sakai N, Quillin RC, Bailey J, Schuster R, Blanchard J, Goetzman H, Caldwell CC, Edwards MJ, Lentsch AB (2013) Roles of hepatocyte and myeloid CXC chemokine receptor-2 in liver recovery and regeneration after ischemia/reperfusion in mice. Hepatology 57:331–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E, Trincavelli ML, Daniele S, Martini C, Gustafsson JA, Doglioni C, Feo SG, Leiva A, Ciampa MG, Mauri L, Sensi C, Prinetti A, Eberini I, Mora JR, Bordignon C, Steffensen KR, Sonnino S, Sozzani S, Traversari C, Russo V (2013) The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med 210:1711–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP (2005) CXC chemokines in angiogenesis. Cytokine Growth Factor Rev 16:593–609

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received funding from the Deutsche Forschungsgemeinschaft (DFG) (Author A.C.: CA1691/2-1; Author J.H.: SFB841 and KFO 306).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonella Carambia or Johannes Herkel.

Ethics declarations

Conflict of interest

Author A.C. has no conflict of interest. Author J.H. is a scientific advisor of Topas Therapeutics GmbH, Hamburg, Germany.

Additional information

This article is a contribution to the special issue on Dietary Control of Immunometabolism - Guest Editors: Joerg Heeren and Ludger Scheja

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carambia, A., Herkel, J. Dietary and metabolic modulators of hepatic immunity. Semin Immunopathol 40, 175–188 (2018). https://doi.org/10.1007/s00281-017-0659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-017-0659-4

Keywords

Navigation