Skip to main content

Advertisement

Log in

Complement activation, a threat to pregnancy

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Pregnancy poses a challenge for the immune systems of placental mammals. As fetal tissues are semi-allogeneic and alloantibodies that commonly develop in the mother, the fetus and the placenta might be subject to complement-mediated immune attack with the potential risk of adverse pregnancy outcomes. Here, I describe how the use of animal models was pivotal in demonstrating that complement inhibition at the fetomaternal interface is essential for a successful pregnancy. Studies in animals also helped the identification of uncontrolled complement activation as a crucial effector in the pathogenesis of recurrent miscarriages, intrauterine growth restriction, preeclampsia, and preterm birth. Clinical studies employing complement biomarkers in plasma and urine showed an association between dysregulation of the complement system and adverse pregnancy outcomes. A better understanding of the role of the complement system in pregnancy complications will allow a rational approach to manipulate its activation as a potential therapeutic strategy with the goal of protecting pregnancies and improving long-term outcomes for mother and child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Billingham RE, Brent L, Medawar PB (2010) Pillars article: “activity acquired tolerance” for foreign cells. J Immunol 184:5–8

    Article  CAS  PubMed  Google Scholar 

  2. Hanna J, Goldman-Wohl D, Hamani Y et al (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12:1065–1074

    Article  CAS  PubMed  Google Scholar 

  3. Aagaard-Tillery KM, Siler R, Dalton J (2006) Immunology of normal pregnancy. Semin Fetal Neonatal Med 11:279–295

    Article  PubMed  Google Scholar 

  4. Fuzzy B, Rizzo R, Criscuoli L et al (2002) HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol 32:311–315

    Article  Google Scholar 

  5. Rouas-Freiss N, Marchal RE, Kirszenbaum M et al (1997) The alpha 1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells : is HLA-G the public ligand for natural killer cell inhibitory receptors? PNAS 94:5249–5254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Munn DH, Zhou M, Attwood JT et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  CAS  PubMed  Google Scholar 

  7. Trowsdale J, Betz AG (2006) Mother’s little helpers : mechanisms of maternal-fetal tolerance. Nat Immunol 7:241–246

    Article  CAS  PubMed  Google Scholar 

  8. Moffett A, Colucci F (2014) Uterine NK-cells : active regulators at the maternal-fetal interface. J Clin Invest 124:1872–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holmes CH, Simpson KL, Wainwright SD et al (1990) Preferential expression of the complement regulatory protein decay accelerating factor at the fetomaternal interface during human pregnancy. J Immunol 144:3099–3105

    CAS  PubMed  Google Scholar 

  10. Hsi BL, Hunt JS, Atkinson JP (1991) Differential expression of complement regulatory proteins on subpopulations of human trophoblast cells. J Reprod Immunol 19:209–223

    Article  CAS  PubMed  Google Scholar 

  11. Janeway CA Jr, Travers P, Walport M et al (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York The complement system and innate immunity

    Google Scholar 

  12. Morgan BP, Meri S (1994) Membrane proteins that protect against complement lysis. Springer Semin Immunopathol 15:369–396

    Article  CAS  PubMed  Google Scholar 

  13. Youn-Uck K, Kinoshita T, Molina H et al (1995) Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med 181:151–159

    Article  Google Scholar 

  14. Xu C, Mao D, Holers VM et al (2000) A critical role for the murine complement regulator Crry in fetomaternal tolerance. Science 287:498–501

    Article  CAS  PubMed  Google Scholar 

  15. Morgan BP, Holmes CH (2000) Immunology of reproduction: protecting the placenta. Curr Biol 10(10):R381–R383

    Article  CAS  PubMed  Google Scholar 

  16. Mao D, Wu X, Deppong C et al (2003) Negligible role of antibodies and C5 in pregnancy loss associated exclusively with C3-dependent mechanisms through complement alternative pathway. Immunity 19:813–822

    Article  CAS  PubMed  Google Scholar 

  17. Molina H, Wong W, Kinoshita T et al (1992) Distinct receptor and regulatory properties of recombinant mouse complement receptor 1 (CR1) and Crry, the two genetic homologues of human CR1. J Exp Med 175:121–129

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Spitzer D, Mao D et al (2008) Membrane protein Crry maintains homeostasis of the complement system. J Immunol 181(4):2732–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lokki AI, Heikkinen-Eloranta J, Jarva H et al (2014) Complement activation and regulation in preeclamptic placenta. Front Immunol 5:312

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buurma A, Cohen D, Veraar K et al (2012) Preeclampsia is characterized by placental complement dysregulation. Hypertension 60:1332–1337

    Article  CAS  PubMed  Google Scholar 

  21. Holmes CH, Simpson KL, Okada H et al (1992) Complement regulatory proteins at the feto-maternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur J Immunol 22:1579–1585

    Article  CAS  PubMed  Google Scholar 

  22. Bulla R, Bossi F, Agostinis C et al (2009) Complement production by trophoblast cells at the feto-maternal interface. J Reprod Immunol 82:119–125

    Article  CAS  PubMed  Google Scholar 

  23. Mor G, Cardenas I, Abrahams V et al (2011) Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 1221:80–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baines MG, Millar KG, Mills P (1974) Studies of complement levels in normal human pregnancy. Obstet Gynecol 43:806–810

    CAS  PubMed  Google Scholar 

  25. Hopkinson ND, Powell RJ (1992) Classical complement activation induced by pregnancy: implications for management of connective tissue diseases. J Clin Pathol 45:66–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richani K, Soto E, Romero R et al (2005) Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med 17:239–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Risk JM, Flanagan BF, Johnson PM (1991) Polymorphism of the human CD46 gene in normal individuals and in recurrent spontaneous abortion. Hum Immunol 30:162–167

    Article  CAS  PubMed  Google Scholar 

  28. Mohlin FC, Mercier E, Fremeaux-Bacchi V (2013) Analysis of genes coding for CD46, CD55, and C4b-binding protein in patients with idiopathic, recurrent, spontaneous pregnancy loss. Eur J Immunol 43:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdi-Shayan S, Monfaredan A, Moradi Z et al (2016) Association of CD46 IVS1-1724 C>G single nucleotide polymorphism in Iranian women with unexplained recurrent spontaneous abortion (URSA). Iran J Allergy Asthma Immunol 15:303–308

    PubMed  Google Scholar 

  30. Salmon JE, Heuser C, Triebwasser M et al (2011) Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med 8(3):e1001013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lokki A, Aalto-Viljakainen T, Meri S et al (2015) Genetic analysis of membrane cofactor protein (CD46) of the complement system in women with and without preeclamptic pregnancies. PLoS One 10(2):–e0117840

  32. WHO fact sheet. http://www.who.int/mediacentre/factsheets/fs363/en/

  33. Gonzalez JM, Franzke CW, Yang F et al (2011) Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. Am J Pathol 179:838–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Norwitz ER, Caughey AB (2011) Progesterone supplementation and the prevention of preterm birth. Rev Obstet Gynecol 4:60–72

    PubMed  PubMed Central  Google Scholar 

  35. Fonseca EB, Celik E, Parra M et al (2007) Progesterone and the risk of preterm birth among women with a short cervix. N Engl J Med 357:462–469

    Article  CAS  PubMed  Google Scholar 

  36. Romero R, Nicolaides K, Conde-Agudelo A et al (2012) Vaginal progesterone in women with an asymptomatic sonographic short cervix in the midtrimester decreases preterm delivery and neonatal morbidity: a systematic review and metaanalysis of individualpatient data. Am J Obstet Gynecol 206:e1–19

    Article  Google Scholar 

  37. Norman JE, Marlow N, Messow CM et al (2016) Vaginal progesterone prophylaxis for preterm birth (the OPPTIMUM study): a multicentre, randomised, double-blind trial. Lancet 387:2106–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez JM, Dong Z, Romero R et al (2011) Cervical remodeling/ripening at term and preterm labor: the same mechanism initiated by different mediators and different effector cells. PLoS One 6:e26877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lynch AM, Gibbs RS, Murphy JR et al (2008) Complement activation fragment bb in early pregnancy and spontaneous preterm birth. Am J Obstet Gynecol 199:354.e1–354.e8

    Article  Google Scholar 

  40. Lynch AM, Gibbs RS, Murphy JR et al (2011) Early elevations of the complement activation fragment C3a and adverse pregnancy outcomes. Obstet Gynecol 117:75–83

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lynch AM, Wagner BD, Deterding RR et al (2016) The relationship of circulating proteins in early pregnancy with preterm birth. Am J Obstet Gynecol 214:517.e1–517.e8

    Article  CAS  Google Scholar 

  42. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    Article  PubMed  PubMed Central  Google Scholar 

  43. Treyvaud K, Ure A, Doyle LW et al (2013) Psychiatric outcomes at age seven for very preterm children: rates and predictors. J Child Psychol Psychiatry 54:772–779

    Article  PubMed  Google Scholar 

  44. Rathbone R, Counsell SJ, Kapellou O et al (2011) Perinatal cortical growth and childhood neurocognitive abilities. Neurology 77:1510–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bell MJ, Hallenbeck JM (2002) Effects of intrauterine inflammation on developing rat brain. J Neurosci Res 70:570–579

    Article  CAS  PubMed  Google Scholar 

  46. Duncan JR, Cock ML, Scheerlinck JP et al (2002) White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 52:941–949

    Article  CAS  PubMed  Google Scholar 

  47. Pedroni SMA, Gonzalez JM, Wade J et al (2014) Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth. Biochim Biophys Acta (BBA) - Mol Basis Dis 1842:107–115

    Article  CAS  Google Scholar 

  48. Matute C (2011) Glutamate and ATP signalling in white matter pathology. J Anat 219:53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Girardi G, Fraser J, Lennen R et al (2015) Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO) - conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development. Mol Psychiatry 20:1017–1026

    Article  CAS  PubMed  Google Scholar 

  50. Pataky R, Howie FA, Girardi G et al (2016) Complement C5a is present in CSF of human newborns and is elevated in association with preterm birth. J Matern Fetal Neonatal Med 21:1–4

    Article  Google Scholar 

  51. Chaouat G, Kiger N, Wegmann TG (1983) Vaccination against spontaneous abortion in mice. J Reprod Immunol 8:389–394

  52. Girardi G, Yarilin D, Thurman JM et al (2006) Complement activation induced dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 203:2165–75

  53. Ahmed A, Singh J, Khan Y et al (2010) A new mouse model to explore therapies for preeclampsia. PLoS One 27 5(10):e13663

  54. Petitbarat M, Durigutto P, Macor P et al (2015) Critical role and therapeutic control of the lectin pathway of complement activation in an abortion-prone mouse mating. J Immunol 195:5602–5607

    Article  CAS  PubMed  Google Scholar 

  55. Qing X, Redecha PB, Burmeister MA et al (2011) Targeted inhibition of complement activation prevents features of preeclampsia in mice. Kidney Int 79:331–339

    Article  CAS  PubMed  Google Scholar 

  56. Xia Y, Kellems RE (2013) Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond. Circ Res 113:78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim EN, Yoon BH, Lee JY et al (2015) Placental C4d deposition is a feature of defective placentation: observations in cases of preeclampsia and miscarriage. Virchows Arch 466:717–725

    Article  CAS  PubMed  Google Scholar 

  58. Derzsy Z, Prohaszka Z, Rigo J et al (2010) Activation of the complement system in normal pregnancy and preeclampsia. Mol Immunol 47:1500–1506

    Article  CAS  PubMed  Google Scholar 

  59. Soto E, Romero R, Richani K et al (2010) Preeclampsia and pregnancies with small-for-gestational age neonates have different profiles of complement split products. J Matern Fetal Neonatal Med 23:646–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Burwick RM, Fichorova RN, Dawood HY et al (2013) Urinary excretion of c5b-9 in severe preeclampsia: tipping the balance of complement activation in pregnancy. Hypertension 62:1040–1045

    Article  CAS  PubMed  Google Scholar 

  61. Tichenor JR, Bledsoe LB, Opsahl MS et al (1995) Activation of complement in humans with a first trimester pregnancy loss. Gynecol Obstet Investig 39:79–82

    Article  CAS  Google Scholar 

  62. Salmon JE, Girardi G (2007) Theodore E. Woodward Award : Antiphospholipid Syndrome Revisited : a disorder initiated by inflammation. Trans Am Clin Climatol Assoc 118:99–114

    PubMed  PubMed Central  Google Scholar 

  63. Girardi G, Berman J, Redecha P et al (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 112:1644–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peerschke EIB, Yin W, Alpert DR et al (2009) Serum complement activation on heterologous platelets is associated with arterial thrombosis in patients with systemic lupus erythematosus and antiphospholipid antibodies. Lupus 18:530–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Redecha P, Tilley R, Tencati M et al (2007) Tissue factor link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110:2423–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Redecha P, Franzke CW, Ruf W et al (2008) Neutrophil activation by the tissue factor/factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J Clin Invest 118:3453–3461

    CAS  PubMed  PubMed Central  Google Scholar 

  67. http://www.thescientist.com/?articles.view/articleNo/27610/title/Safeguardingthe-Foreigner-Within/

  68. Bertolaccini ML, Contento G, Lennen R et al (2016) Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome. J Autoimmun 75:30–38

  69. Mahajan SD, Parikh NU, Woodruff TM et al (2015) C5a alters blood-brain barrier integrity in a human in vitro model of systemic lupus erythematosus. Immunology 146:130–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gustavsen A, Skattum L, Bergseth G et al (2017) Effect on mother and child of eculizumab given before caesarian section in a patient with severe antiphospholipid syndrome : a case report. Medicine (Baltimore) 96(11):e6338

    Article  Google Scholar 

  71. Burwick RM, Feinberg BB (2013) Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta 34:201

    Article  CAS  PubMed  Google Scholar 

  72. Breen KA, Seed P, Parmar K et al (2012) Complement activation in patients with isolated antiphospholipid antibodies or primary antiphospholipid syndrome. Thromb Haemost 107:423-429 

  73. Buyon JP, Kim MY, Guerra MM et al (2015) Predictors of pregnancy outcomes in patients with lupus: a cohort study. Ann Intern Med 163:153-163

  74. Agostinis C, Bulla R, Tripodo C et al (2010) An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J Immunol 185:4420-4429 

  75. Singh J, Ahmed A, Girardi G (2011) Role of complement component C1q in the onset of preeclampsia in mice. Hypertension 58:716-724 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermina Girardi.

Additional information

This article is a contribution to the special issue on Complement in Health and Disease: Novel Aspects and Insights – Guest Editors: Paul Morgan and David Kavanagh

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girardi, G. Complement activation, a threat to pregnancy. Semin Immunopathol 40, 103–111 (2018). https://doi.org/10.1007/s00281-017-0645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-017-0645-x

Keywords

Navigation