Skip to main content

Advertisement

Log in

Regulatory roles of mast cells in immune responses

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Mast cells are important immune cells for host defense through activation of innate immunity (via toll-like receptors or complement receptors) and acquired immunity (via FcεRI). Conversely, mast cells also act as effector cells that exacerbate development of allergic or autoimmune disorders. Yet, several lines of evidence show that mast cells act as regulatory cells to suppress certain inflammatory diseases. Here, we review the mechanisms by which mast cells suppress diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2
Fig. 3

Similar content being viewed by others

References

  1. Voehringer D (2013) Protective and pathological roles of mast cells and basophils. Nat Rev Immunol 13:362–375

    Article  CAS  PubMed  Google Scholar 

  2. Gurish MF, Bryce PJ, Tao H, Kisselgof AB, Thornton EM, Miller HR et al (2004) IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis. J Immunol 172:1139–1145

    Article  CAS  PubMed  Google Scholar 

  3. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ (2007) Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 217:304–328

    Article  CAS  PubMed  Google Scholar 

  5. El-Refaie AM, Burt AD (2005) Mast cells and c-Kit expression in liver allograft rejection. Histopathology 47:375–381

    Article  PubMed  Google Scholar 

  6. Goto E, Honjo S, Yamashita H, Shomori K, Adachi H, Ito H (2002) Mast cells in human allografted kidney: correlation with interstitial fibrosis. Clin Transplant 16(Suppl 8):7–11

    Article  PubMed  Google Scholar 

  7. Jungraithmayr W (2015) The putative role of mast cells in lung transplantation. Am J Transplant 15:594–600

    Article  CAS  PubMed  Google Scholar 

  8. Itoh S, Nakae S, Velotta JB, Kosuge H, Connolly A, Tsai M et al (2010) The role of recipient mast cells in acute and chronic cardiac allograft rejection in C57BL/6-KitW-sh/W-sh mice. J Heart Lung Transplant 29:401–409

    Article  PubMed  Google Scholar 

  9. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    Article  CAS  PubMed  Google Scholar 

  10. Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR et al (2001) IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166:3789–3796

    Article  CAS  PubMed  Google Scholar 

  11. Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, McKenzie NA (2000) IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13:573–583

    Article  CAS  PubMed  Google Scholar 

  12. Hultner L, Druez C, Moeller J, Uyttenhove C, Schmitt E, Rude E et al (1990) Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur J Immunol 20:1413–1416

    Article  CAS  PubMed  Google Scholar 

  13. Matsuzawa S, Sakashita K, Kinoshita T, Ito S, Yamashita T, Koike K (2003) IL-9 enhances the growth of human mast cell progenitors under stimulation with stem cell factor. J Immunol 170:3461–3467

    Article  CAS  PubMed  Google Scholar 

  14. Eller K, Wolf D, Huber JM, Metz M, Mayer G, McKenzie AN et al (2011) IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J Immunol 186:83–91

    Article  CAS  PubMed  Google Scholar 

  15. Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F et al (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7:652–662

    Article  CAS  PubMed  Google Scholar 

  16. de Vries VC, Pino-Lagos K, Nowak EC, Bennett KA, Oliva C, Noelle RJ (2011) Mast cells condition dendritic cells to mediate allograft tolerance. Immunity 35:550–561

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu KN, Emmons RV, Lisanti MP, Farber JL, Witkiewicz AK (2009) Foxp3-expressing T regulatory cells and mast cells in acute graft-versus-host disease of the skin. Cell Cycle 8:3601–3605

    Article  CAS  PubMed  Google Scholar 

  18. Schroeder MA, DiPersio JF (2011) Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech 4:318–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Korngold R, Jameson BA, McDonnell JM, Leighton C, Sutton BJ, Gould HJ et al (1997) Peptide analogs that inhibit IgE-Fc epsilon RI alpha interactions ameliorate the development of lethal graft-versus-host disease. Biol Blood Marrow Transplant 3:187–193

    CAS  PubMed  Google Scholar 

  20. Murphy GF, Sueki H, Teuscher C, Whitaker D, Korngold R (1994) Role of mast cells in early epithelial target cell injury in experimental acute graft-versus-host disease. J Invest Dermatol 102:451–461

    Article  CAS  PubMed  Google Scholar 

  21. Leveson-Gower DB, Sega EI, Kalesnikoff J, Florek M, Pan Y, Pierini A et al (2013) Mast cells suppress murine GVHD in a mechanism independent of CD4+CD25+ regulatory T cells. Blood 122:3659–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iwakura Y, Nakae S, Saijo S, Ishigame H (2008) The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 226:57–79

    Article  CAS  PubMed  Google Scholar 

  23. Torii I, Morikawa S, Harada T, Kitamura Y (1993) Two distinct types of cellular mechanisms in the development of delayed hypersensitivity in mice: requirement of either mast cells or macrophages for elicitation of the response. Immunology 78:482–490

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Askenase PW, Van Loveren H, Kraeuter-Kops S, Ron Y, Meade R, Theoharides TC et al (1983) Defective elicitation of delayed-type hypersensitivity in W/Wv and SI/SId mast cell-deficient mice. J Immunol 131:2687–2694

    CAS  PubMed  Google Scholar 

  25. Villa I, Skokos D, Tkaczyk C, Peronet R, David B, Huerre M et al (2001) Capacity of mouse mast cells to prime T cells and to induce specific antibody responses in vivo. Immunology 102:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kimber I, Dearman RJ (2002) Allergic contact dermatitis: the cellular effectors. Contact Dermatitis 46:1–5

    Article  PubMed  Google Scholar 

  27. van Loveren H, Meade R, Askenase PW (1983) An early component of delayed-type hypersensitivity mediated by T cells and mast cells. J Exp Med 157:1604–1617

    Article  PubMed  Google Scholar 

  28. Geba GP, Ptak W, Anderson GM, Paliwal V, Ratzlaff RE, Levin J et al (1996) Delayed-type hypersensitivity in mast cell-deficient mice: dependence on platelets for expression of contact sensitivity. J Immunol 157:557–565

    CAS  PubMed  Google Scholar 

  29. Webb EF, Tzimas MN, Newsholme SJ, Griswold DE (1998) Intralesional cytokines in chronic oxazolone-induced contact sensitivity suggest roles for tumor necrosis factor alpha and interleukin-4. J Invest Dermatol 111:86–92

    Article  CAS  PubMed  Google Scholar 

  30. Biedermann T, Kneilling M, Mailhammer R, Maier K, Sander CA, Kollias G et al (2000) Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J Exp Med 192:1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bryce PJ, Miller ML, Miyajima I, Tsai M, Galli SJ, Oettgen HC (2004) Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity 20:381–392

    Article  CAS  PubMed  Google Scholar 

  32. Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Kohler A et al (2011) Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34:973–984

    Article  CAS  PubMed  Google Scholar 

  33. Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H et al (2011) Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One 6, e25538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomas WR, Schrader JW (1983) Delayed hypersensitivity in mast-cell-deficient mice. J Immunol 130:2565–2567

    CAS  PubMed  Google Scholar 

  35. Galli SJ, Hammel I (1984) Unequivocal delayed hypersensitivity in mast cell-deficient and beige mice. Science 226:710–713

    Article  CAS  PubMed  Google Scholar 

  36. Mekori YA, Galli SJ (1985) Undiminished immunologic tolerance to contact sensitivity in mast cell-deficient W/Wv and Sl/Sld mice. J Immunol 135:879–885

    CAS  PubMed  Google Scholar 

  37. Mekori YA, Weitzman GL, Galli SJ (1985) Reevaluation of reserpine-induced suppression of contact sensitivity. Evidence that reserpine interferes with T lymphocyte function independently of an effect on mast cells. J Exp Med 162:1935–1953

    Article  CAS  PubMed  Google Scholar 

  38. Ha TY, Reed ND, Crowle PK (1986) Immune response potential of mast cell-deficient W/Wv mice. Int Arch Allergy Appl Immunol 80:85–94

    Article  CAS  PubMed  Google Scholar 

  39. Mekori YA, Chang JC, Wershil BK, Galli SJ (1987) Studies of the role of mast cells in contact sensitivity responses. Passive transfer of the reaction into mast cell-deficient mice locally reconstituted with cultured mast cells: effect of reserpine on transfer of the reaction with DNP-specific cloned T cells. Cell Immunol 109:39–52

    Article  PubMed  Google Scholar 

  40. Williams CM, Galli SJ (2000) Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med 192:455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oboki K, Ohno T, Saito H, Nakae S (2008) Th17 and allergy. Allergol Int 57:121–134

    Article  CAS  PubMed  Google Scholar 

  42. Streilein JW, Taylor JR, Vincek V, Kurimoto I, Richardson J, Tie C et al (1994) Relationship between ultraviolet radiation-induced immunosuppression and carcinogenesis. J Invest Dermatol 103:107S–111S

    Article  CAS  PubMed  Google Scholar 

  43. Hart PH, Grimbaldeston MA, Swift GJ, Jaksic A, Noonan FP, Finlay-Jones JJ (1998) Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med 187:2045–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104

    Article  CAS  PubMed  Google Scholar 

  45. Hershko AY, Suzuki R, Charles N, Alvarez-Errico D, Sargent JL, Laurence A et al (2011) Mast cell interleukin-2 production contributes to suppression of chronic allergic dermatitis. Immunity 35:562–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gregory LG, Lloyd CM (2011) Orchestrating house dust mite-associated allergy in the lung. Trends Immunol 32:402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Herbert CA, King CM, Ring PC, Holgate ST, Stewart GA, Thompson PJ et al (1995) Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am J Respir Cell Mol Biol 12:369–378

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura T, Hirasawa Y, Takai T, Mitsuishi K, Okuda M, Kato T et al (2006) Reduction of skin barrier function by proteolytic activity of a recombinant house dust mite major allergen Der f1. J Invest Dermatol 126:2719–2723

    Article  CAS  PubMed  Google Scholar 

  49. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ et al (1999) Der p1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chua KY, Stewart GA, Thomas WR, Simpson RJ, Dilworth RJ, Plozza TM et al (1988) Sequence analysis of cDNA coding for a major house dust mite allergen, Der p1. Homology with cysteine proteases. J Exp Med 167:175–182

    Article  CAS  PubMed  Google Scholar 

  51. Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A et al (2010) IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci U S A 107:18581–18586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA et al (2014) Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40:758–771

    Article  CAS  PubMed  Google Scholar 

  53. Halim TY, Steer CA, Matha L, Gold MJ, Martinez-Gonzalez I, McNagny KM et al (2014) Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ho LH, Ohno T, Oboki K, Kajiwara N, Suto H, Iikura M et al (2007) IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcepsilonRI signals. J Leukoc Biol 82:1481–1490

    Article  CAS  PubMed  Google Scholar 

  55. Iikura M, Suto H, Kajiwara N, Oboki K, Ohno T, Okayama Y et al (2007) IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Invest 87:971–978

    Article  CAS  PubMed  Google Scholar 

  56. Suzukawa M, Iikura M, Koketsu R, Nagase H, Tamura C, Komiya A et al (2008) An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J Immunol 181:5981–5989

    Article  CAS  PubMed  Google Scholar 

  57. Morita H, Arae K, Unno H, Miyauchi K, Toyama S, Nambu A et al (2015) An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (B) (K.M.); a grant from Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (S.N.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; a Health Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare, Japan (K.M.); and a grant from Banyu Life Science Foundation International (H.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Nakae.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

This article is a contribution to the special issue on Basophils and Mast Cells in Immunity and Inflammation - Guest Editor: Hajime Karasuyama

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, H., Saito, H., Matsumoto, K. et al. Regulatory roles of mast cells in immune responses. Semin Immunopathol 38, 623–629 (2016). https://doi.org/10.1007/s00281-016-0566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0566-0

Keywords

Navigation