Skip to main content

Advertisement

Log in

The role of the acquired immune response in systemic sclerosis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Profound alterations characterize the adaptive immune response in systemic sclerosis, and several layers of evidence support a prominent role exerted by immune cellular effectors and humoral mediators in the pathogenesis of this disease. These include (i) the presence of oligoclonal T cells in tissues undergoing fibrosis consistent with (auto)antigen-specific recruitment, (ii) the preferential expansion of polarized CD4+ and CD8+ T cells producing pro-fibrotic cytokines such as IL-4 and IL-13, (iii) the presence of increased number of cells producing mediators belonging to the IL-17 family, including IL-22, which may drive and participate in inflammatory pathways involving epithelial cells as well as fibroblasts, (iv) the deficient or redirected function of T regulatory cells favoring fibrosis, and (v) the enhanced expression of CD19 and CD21 on naïve B cells, and the upregulation of co-stimulatory molecules in mature B cells, which together with the increased levels of B cell activating factor (BAFF) underlie the propensity to an exaggerated humoral response possibly favoring fibrogenesis. Despite all the progress made in understanding the features of the aberrant immune response in scleroderma, it remains unclear whether the activation of immune effector pathways ultimately drives the disease pathogenesis or rather represents a defective attempt to limit or even reverse excessive extracellular matrix deposition and progressive vasculopathy, the main hallmarks of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agarwal SK, Gourh P, Shete S, Paz G, Divecha D, Reveille JD et al (2009) Association of interleukin 23 receptor polymorphisms with anti-topoisomerase-I positivity and pulmonary hypertension in systemic sclerosis. J Rheumatol 36:2715–2723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Allanore Y, Saad M, Dieude P, Avouac J, Distler JH, Amouyel P et al (2011) Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7, e1002091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S (2009) Type 17 T helper cells—origins, features and possible roles in rheumatic disease. Nat Rev Rheumatol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  4. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Annunziato F, Romagnani S (2009) Heterogeneity of human effector CD4+ T cells. Arthritis Res Ther 11:257

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Antiga E, Quaglino P, Bellandi S, Volpi W, Del Bianco E, Comessatti A et al (2010) Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphoea. Br J Dermatol 162:1056–1063

    Article  CAS  PubMed  Google Scholar 

  7. Arnett FC, Gourh P, Shete S, Ahn CW, Honey RE, Agarwal SK et al (2010) Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis 69:822–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Artlett CM, Smith JB, Jimenez SA (1998) Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 338:1186–1191

    Article  CAS  PubMed  Google Scholar 

  9. Atamas SP, Yurovsky VV, Wise R, Wigley FM, Goter Robinson CJ, Henry P et al (1999) Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum 42:1168–1178

    Article  CAS  PubMed  Google Scholar 

  10. Baraut J, Grigore EI, Jean-Louis F, Khelifa SH, Durand C, Verrecchia F et al (2014) Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study. Bone Marrow Transplant 49:349–354

    Article  CAS  PubMed  Google Scholar 

  11. Bielecki M, Kowal K, Lapinska A, Bernatowicz P, Chyczewski L, Kowal-Bielecka O (2010) Increased production of a proliferation-inducing ligand (APRIL) by peripheral blood mononuclear cells is associated with antitopoisomerase I antibody and more severe disease in systemic sclerosis. J Rheumatol 37:2286–2289

    Article  PubMed  Google Scholar 

  12. Boin F, De Fanis U, Bartlett SJ, Wigley FM, Rosen A, Casolaro V (2008) T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease. Arthritis Rheum 58:1165–1174

    Article  PubMed Central  PubMed  Google Scholar 

  13. Boin F, Wigley FM, Schneck JP, Oelke M, Rosen A (2005) Evaluation of topoisomerase-1-specific CD8+ T-cell response in systemic sclerosis. Ann N Y Acad Sci 1062:137–145

    Article  CAS  PubMed  Google Scholar 

  14. Bossini-Castillo L, Martin JE, Broen J, Gorlova O, Simeon CP, Beretta L et al (2012) A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Hum Mol Genet 21:926–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Brembilla NC, Montanari E, Truchetet ME, Raschi E, Meroni P, Chizzolini C (2013) Th17 cells favor inflammatory responses while inhibiting type I collagen deposition by dermal fibroblasts: differential effects in healthy and systemic sclerosis fibroblasts. Arthritis Res Ther 15:R151

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Broen JC, Dieude P, Vonk MC, Beretta L, Carmona FD, Herrick A et al (2012) Polymorphisms in the interleukin 4, interleukin 13, and corresponding receptor genes are not associated with systemic sclerosis and do not influence gene expression. J Rheumatol 39:112–118

    Article  CAS  PubMed  Google Scholar 

  17. Broen JC, Wolvers-Tettero IL, Geurts-van Bon L, Vonk MC, Coenen MJ, Lafyatis R, et al (2010) Skewed X chromosomal inactivation impacts T regulatory cell function in systemic sclerosis. Ann Rheum Dis 69:2213–16

  18. Burt RK, Oliveira MC, Shah SJ, Moraes DA, Simoes B, Gheorghiade M et al (2013) Cardiac involvement and treatment-related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: a retrospective analysis. Lancet 381:1116–1124

    Article  PubMed  Google Scholar 

  19. Burt RK, Shah SJ, Dill K, Grant T, Gheorghiade M, Schroeder J et al (2011) Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378:498–506

    Article  CAS  PubMed  Google Scholar 

  20. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L et al (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42:963–970

    Article  CAS  PubMed  Google Scholar 

  21. Chizzolini C, Parel Y, De Luca C, Tyndall A, Akesson A, Scheja A et al (2003) Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor alpha. Arthritis Rheum 48:2593–2604

    Article  CAS  PubMed  Google Scholar 

  22. Chizzolini C, Parel Y, Scheja A, Dayer JM (2005) Polarized subsets of human T helper cells induce distinct patterns of chemokine production by normal and systemic sclerosis dermal fibroblasts (abstract). Clin Exp Rheumatol 23:739

    Google Scholar 

  23. Chizzolini C, Rezzonico R, De Luca C, Burger D, Dayer JM (2000) Th2 cell membrane factors in association with IL-4 enhance matrix metalloproteinase-1 (MMP-1) while decreasing MMP-9 production by granulocyte-macrophage colony-stimulating factor-differentiated human monocytes. J Immunol 164:5952–5960

    Article  CAS  PubMed  Google Scholar 

  24. Chizzolini C, Rezzonico R, Ribbens C, Burger D, Wollheim FA, Dayer JM (1998) Inhibition of type I collagen production by dermal fibroblasts upon contact with activated T cells: different sensitivity to inhibition between systemic sclerosis and control fibroblasts. Arthritis Rheum 41:2039–2047

    Article  CAS  PubMed  Google Scholar 

  25. Del Galdo F, Jimenez SA (2007) T cells expressing allograft inflammatory factor 1 display increased chemotaxis and induce a profibrotic phenotype in normal fibroblasts in vitro. Arthritis Rheum 56:3478–3488

    Article  PubMed  CAS  Google Scholar 

  26. Farge D, Henegar C, Carmagnat M, Daneshpouy M, Marjanovic Z, Rabian C et al (2005) Analysis of immune reconstitution after autologous bone marrow transplantation in systemic sclerosis. Arthritis Rheum 52:1555–1563

    Article  CAS  PubMed  Google Scholar 

  27. Fenoglio D, Battaglia F, Parodi A, Stringara S, Negrini S, Panico N et al (2011) Alteration of Th17 and Treg cell subpopulations co-exist in patients affected with systemic sclerosis. Clin Immunol 139:249–257

    Article  CAS  PubMed  Google Scholar 

  28. Ferrarini M, Steen V, Medsger TA Jr, Whiteside TL (1990) Functional and phenotypic analysis of T lymphocytes cloned from the skin of patients with systemic sclerosis. Clin Exp Immunol 79:346–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fleischmajer R, Perlish JS, Reeves JR (1977) Cellular infiltrates in scleroderma skin. Arthritis Rheum 20:975–984

    Article  CAS  PubMed  Google Scholar 

  30. Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, Connolly MK et al (2008) Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS ONE 3, e1452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C et al (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183:2593–2603

    Article  CAS  PubMed  Google Scholar 

  32. Francois A, Chatelus E, Wachsmann D, Sibilia J, Bahram S, Alsaleh G et al (2013) B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res Ther 15:R168

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Francois A, Gombault A, Villeret B, Alsaleh G, Fanny M, Gasse P et al (2015) B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis. J Autoimmun 56:1–11

    Article  CAS  PubMed  Google Scholar 

  34. Fukasawa C, Kawaguchi Y, Harigai M, Sugiura T, Takagi K, Kawamoto M et al (2003) Increased CD40 expression in skin fibroblasts from patients with systemic sclerosis (SSc): role of CD40-CD154 in the phenotype of SSc fibroblasts. Eur J Immunol 33:2792–2800

    Article  CAS  PubMed  Google Scholar 

  35. Fuschiotti P, Larregina AT, Ho J, Feghali-Bostwick C, Medsger TA Jr (2013) Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum 65:236–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Fuschiotti P, Medsger TA Jr, Morel PA (2009) Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum 60:1119–1128

    Article  CAS  PubMed  Google Scholar 

  37. Gasse P, Riteau N, Vacher R, Michel ML, Fautrel A, di Padova F et al (2011) IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS ONE 6, e23185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gerber EE, Gallo EM, Fontana SC, Davis EC, Wigley FM, Huso DL et al (2013) Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature 503:126–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, Teruel M et al (2011) Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 7, e1002178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gorlova O, Martin JE, Rueda B, Koeleman BP, Ying J, Teruel M et al (2011) Correction: identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 7:e1002178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gourh P, Arnett FC, Assassi S, Tan FK, Huang M, Diekman L et al (2009) Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Res Ther 11:R147

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Hoffmann KF, McCarty TC, Segal DH, Chiaramonte M, Hesse M, Davis EM et al (2001) Disease fingerprinting with cDNA microarrays reveals distinct gene expression profiles in lethal type 1 and type 2 cytokine-mediated inflammatory reactions. FASEB J 15:2545–2547

    CAS  PubMed  Google Scholar 

  43. Hu PQ, Hurwitz AA, Oppenheim JJ (2007) Immunization with DNA topoisomerase I induces autoimmune responses but not scleroderma-like pathologies in mice. J Rheumatol 34:2243–2252

    CAS  PubMed  Google Scholar 

  44. Hu PQ, Oppenheim JJ, Medsger TA Jr, Wright TM (2006) T cell lines from systemic sclerosis patients and healthy controls recognize multiple epitopes on DNA topoisomerase I. J Autoimmun 26:258–267

    Article  CAS  PubMed  Google Scholar 

  45. Hugle T, O'Reilly S, Simpson R, Kraaij MD, Bigley V, Collin M et al (2013) Tumor necrosis factor-costimulated T lymphocytes from patients with systemic sclerosis trigger collagen production in fibroblasts. Arthritis Rheum 65:481–491

    Article  PubMed  CAS  Google Scholar 

  46. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM et al (2014) Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343:152–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kahari VM, Sandberg M, Kalimo H, Vuorio T, Vuorio E (1988) Identification of fibroblasts responsible for increased collagen production in localized scleroderma by in situ hybridization. J Investig Dermatol 90:664–670

    Article  CAS  PubMed  Google Scholar 

  48. Kawai M, Masuda A, Kuwana M (2008) A CD40-CD154 interaction in tissue fibrosis. Arthritis Rheum 58:3562–3573

    Article  CAS  PubMed  Google Scholar 

  49. Klein S, Kretz CC, Ruland V, Stumpf C, Haust M, Hartschuh W, et al (2010) Reduction of regulatory T cells in skin lesions but not in peripheral blood of patients with systemic scleroderma. Ann Rheum Dis 70:1475–81

  50. Komura K, Fujimoto M, Hasegawa M, Ogawa F, Hara T, Muroi E et al (2008) Increased serum interleukin 23 in patients with systemic sclerosis. J Rheumatol 35:120–125

    Article  CAS  PubMed  Google Scholar 

  51. Komura K, Fujimoto M, Matsushita T, Yanaba K, Kodera M, Kawasuji A et al (2007) Increased serum soluble CD40 levels in patients with systemic sclerosis. J Rheumatol 34:353–358

    CAS  PubMed  Google Scholar 

  52. Komura K, Fujimoto M, Yanaba K, Matsushita T, Matsushita Y, Horikawa M et al (2008) Blockade of CD40/CD40 ligand interactions attenuates skin fibrosis and autoimmunity in the tight-skin mouse. Ann Rheum Dis 67:867–872

    Article  CAS  PubMed  Google Scholar 

  53. Komura K, Sato S, Hasegawa M, Fujimoto M, Takehara K (2004) Elevated circulating CD40L concentrations in patients with systemic sclerosis. J Rheumatol 31:514–519

    CAS  PubMed  Google Scholar 

  54. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  55. Kreuter A, Hoxtermann S, Tigges C, Hahn SA, Altmeyer P, Gambichler T (2009) Clonal T-cell populations are frequent in the skin and blood of patients with systemic sclerosis. Br J Dermatol 161:785–790

    Article  CAS  PubMed  Google Scholar 

  56. Kurasawa K, Hirose K, Sano H, Endo H, Shinkai H, Nawata Y et al (2000) Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum 43:2455–2463

    Article  CAS  PubMed  Google Scholar 

  57. Kuwana M, Feghali CA, Medsger TA Jr, Wright TM (2001) Autoreactive T cells to topoisomerase I in monozygotic twins discordant for systemic sclerosis. Arthritis Rheum 44:1654–1659

    Article  CAS  PubMed  Google Scholar 

  58. Kuwana M, Medsger TA Jr, Wright TM (1995) T cell proliferative response induced by DNA topoisomerase I in patients with systemic sclerosis and healthy donors. J Clin Invest 96:586–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kuwana M, Medsger TA Jr, Wright TM (1997) Highly restricted TCR-alpha beta usage by autoreactive human T cell clones specific for DNA topoisomerase I: recognition of an immunodominant epitope. J Immunol 158:485–491

    CAS  PubMed  Google Scholar 

  60. Lafyatis R, O'Hara C, Feghali-Bostwick CA, Matteson E (2007) B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum 56:3167–3168

    Article  PubMed  Google Scholar 

  61. Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K et al (2013) Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood 121:3274–3283

    Article  PubMed  CAS  Google Scholar 

  62. Liu X, Gao N, Li M, Xu D, Hou Y, Wang Q et al (2013) Elevated levels of CD4(+)CD25(+)FoxP3(+) T cells in systemic sclerosis patients contribute to the secretion of IL-17 and immunosuppression dysfunction. PLoS ONE 8, e64531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lonati PA, Brembilla NC, Montanari E, Fontao L, Gabrielli A, Vettori S et al (2014) High IL-17E and low IL-17C dermal expression identifies a fibrosis-specific motif common to morphea and systemic sclerosis. PLoS ONE 9, e105008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. MacDonald KG, Dawson NA, Huang Q, Dunne JV, Levings MK, Broady R (2015) Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. J Allergy Clin Immunol 135:946–55.e9

  65. Mackay F, Browning JL (2002) BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2:465–475

    Article  CAS  PubMed  Google Scholar 

  66. Mathian A, Parizot C, Dorgham K, Trad S, Arnaud L, Larsen M et al (2012) Activated and resting regulatory T cell exhaustion concurs with high levels of interleukin-22 expression in systemic sclerosis lesions. Ann Rheum Dis 71:1227–1234

    Article  CAS  PubMed  Google Scholar 

  67. Matsushita T, Fujimoto M, Hasegawa M, Matsushita Y, Komura K, Ogawa F et al (2007) BAFF antagonist attenuates the development of skin fibrosis in tight-skin mice. J Investig Dermatol 127:2772–2780

    Article  CAS  PubMed  Google Scholar 

  68. Matsushita T, Fujimoto M, Hasegawa M, Tanaka C, Kumada S, Ogawa F et al (2007) Elevated serum APRIL levels in patients with systemic sclerosis: distinct profiles of systemic sclerosis categorized by APRIL and BAFF. J Rheumatol 34:2056–2062

    CAS  PubMed  Google Scholar 

  69. Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S (2006) Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum 54:192–201

    Article  CAS  PubMed  Google Scholar 

  70. Mavalia C, Scaletti C, Romagnani P, Carossino AM, Pignone A, Emmi L et al (1997) Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am J Pathol 151:1751–1758

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV et al (2014) Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet 94:47–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Medsger TA Jr, Ivanco DE, Kardava L, Morel PA, Lucas MR, Fuschiotti P (2011) GATA-3 up-regulation in CD8+ T cells as a biomarker of immune dysfunction in systemic sclerosis, resulting in excessive interleukin-13 production. Arthritis Rheum 63:1738–1747

    Article  PubMed  Google Scholar 

  73. Meloni F, Solari N, Cavagna L, Morosini M, Montecucco CM, Fietta AM (2009) Frequency of Th1, Th2 and Th17 producing T lymphocytes in bronchoalveolar lavage of patients with systemic sclerosis. Clin Exp Rheumatol 27:765–772

    CAS  PubMed  Google Scholar 

  74. Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG et al (2011) Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol 187:3003–3014

    Article  CAS  PubMed  Google Scholar 

  75. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  CAS  PubMed  Google Scholar 

  76. Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T et al (2012) Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol 188:3573–3583

    Article  CAS  PubMed  Google Scholar 

  77. Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A et al (1998) Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351:559–562

    Article  CAS  PubMed  Google Scholar 

  78. Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38:414–423

    Article  CAS  PubMed  Google Scholar 

  79. Okamoto Y, Hasegawa M, Matsushita T, Hamaguchi Y, Huu DL, Iwakura Y et al (2012) Potential roles of interleukin-17A in the development of skin fibrosis in mice. Arthritis Rheum 64:3726–3735

    Article  CAS  PubMed  Google Scholar 

  80. Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM, Essayan DM (2000) Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther 292:988–994

    CAS  PubMed  Google Scholar 

  81. Oriss TB, Hu PQ, Wright TM (2001) Distinct autoreactive T cell responses to native and fragmented DNA topoisomerase I: influence of APC type and IL-2. J Immunol 166:5456–5463

    Article  CAS  PubMed  Google Scholar 

  82. Parel Y, Aurrand-Lions M, Scheja A, Dayer JM, Roosnek E, Chizzolini C (2007) Presence of CD4+CD8+ double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis. Arthritis Rheum 56:3459–3467

    Article  CAS  PubMed  Google Scholar 

  83. Postlethwaite AE, Holness MA, Katai H, Raghow R (1992) Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest 90:1479–1485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P (1992) Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 166:255–263

    Article  CAS  PubMed  Google Scholar 

  85. Radstake TR, Gorlova O, Rueda B, Martin JE, Alizadeh BZ, Palomino-Morales R et al (2010) Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 42:426–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Radstake TR, van Bon L, Broen J, Hussiani A, Hesselstrand R, Wuttge DM et al (2009) The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFbeta and IFNgamma distinguishes SSc phenotypes. PLoS ONE 4, e5903

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Radstake TR, van Bon L, Broen J, Wenink M, Santegoets K, Deng Y et al (2009) Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFbeta expression. PLoS ONE 4, e5981

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Rands AL, Whyte J, Cox B, Hall ND, McHugh NJ (2000) MHC class II associations with autoantibody and T cell immune responses to the scleroderma autoantigen topoisomerase I. J Autoimmun 15:451–458

    Article  CAS  PubMed  Google Scholar 

  89. Rodriguez-Reyna TS, Furuzawa-Carballeda J, Cabiedes J, Fajardo-Hermosillo LD, Martinez-Reyes C, Diaz-Zamudio M, et al (2011) Th17 peripheral cells are increased in diffuse cutaneous systemic sclerosis compared with limited illness: a cross-sectional study. Rheumatol Int 32:2653–60

  90. Rosenbloom J, Feldman G, Freundlich B, Jimenez SA (1986) Inhibition of excessive scleroderma fibroblast collagen production by recombinant gamma-interferon. Association with a coordinate decrease in types I and III procollagen messenger RNA levels. Arthritis Rheum 29:851–856

    Article  CAS  PubMed  Google Scholar 

  91. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  CAS  PubMed  Google Scholar 

  92. Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H (2013) The plasticity and stability of regulatory T cells. Nat Rev Immunol 13:461–467

    Article  CAS  PubMed  Google Scholar 

  93. Sakkas LI, Xu B, Artlett CM, Lu S, Jimenez SA, Platsoucas CD (2002) Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol 168:3649–3659

    Article  CAS  PubMed  Google Scholar 

  94. Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA (2003) Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol 171:3655–3667

    Article  CAS  PubMed  Google Scholar 

  95. Sato S, Fujimoto M, Hasegawa M, Takehara K (2004) Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 50:1918–1927

    Article  PubMed  Google Scholar 

  96. Sato S, Hanakawa H, Hasegawa M, Nagaoka T, Hamaguchi Y, Nishijima C et al (2000) Levels of interleukin 12, a cytokine of type 1 helper T cells, are elevated in sera from patients with systemic sclerosis. J Rheumatol 27:2838–2842

    CAS  PubMed  Google Scholar 

  97. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 165:6635–6643

    Article  CAS  PubMed  Google Scholar 

  98. Sato S, Hasegawa M, Takehara K (2001) Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci 27:140–146

    Article  CAS  PubMed  Google Scholar 

  99. Scaletti C, Vultaggio A, Bonifacio S, Emmi L, Torricelli F, Maggi E et al (2002) Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum 46:445–450

    Article  CAS  PubMed  Google Scholar 

  100. Scharffetter K, Lankat-Buttgereit B, Krieg T (1988) Localization of collagen mRNA in normal and scleroderma skin by in-situ hybridization. Eur J Clin Investig 18:9–17

    Article  CAS  Google Scholar 

  101. Shah AA, Rosen A, Hummers L, Wigley F, Casciola-Rosen L (2010) Close temporal relationship between onset of cancer and scleroderma in patients with RNA polymerase I/III antibodies. Arthritis Rheum 62:2787–2795

    Article  PubMed Central  PubMed  Google Scholar 

  102. Simonian PL, Roark CL, Wehrmann F, Lanham AK, Diaz del Valle F, Born WK (2009) Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis. J Immunol 182:657–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Slobodin G, Ahmad MS, Rosner I, Peri R, Rozenbaum M, Kessel A et al (2010) Regulatory T cells (CD4(+)CD25(bright)FoxP3(+)) expansion in systemic sclerosis correlates with disease activity and severity. Cell Immunol 261:77–80

    Article  CAS  PubMed  Google Scholar 

  104. Sondergaard K, Stengaard-Pedersen K, Zachariae H, Heickendorff L, Deleuran M, Deleuran B (1998) Soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) in scleroderma skin. Br J Rheumatol 37:304–310

    Article  CAS  PubMed  Google Scholar 

  105. Takeda K, Hatamochi A, Arakawa M, Ueki H (1993) Effects of tumor necrosis factor-alpha on connective tissue metabolism in normal and scleroderma fibroblast cultures. Arch Dermatol Res 284:440–444

    Article  CAS  PubMed  Google Scholar 

  106. Truchetet ME, Brembilla NC, Montanari E, Allanore Y, Chizzolini C (2011) Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res Ther 13:R166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Truchetet ME, Brembilla NC, Montanari E, Chizzolini C (2010) T-cell subsets in scleroderma patients. Expert Rev Dermatol 5:403–415

    Article  CAS  Google Scholar 

  108. Truchetet ME, Brembilla NC, Montanari E, Lonati P, Raschi E, Zeni S et al (2013) Interleukin-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement. Arthritis Rheum 65:1347–1356

    Article  CAS  PubMed  Google Scholar 

  109. Tsuchiya N, Kuroki K, Fujimoto M, Murakami Y, Tedder TF, Tokunaga K et al (2004) Association of a functional CD19 polymorphism with susceptibility to systemic sclerosis. Arthritis Rheum 50:4002–4007

    Article  CAS  PubMed  Google Scholar 

  110. Valentini G, Baroni A, Esposito K, Naclerio C, Buommino E, Farzati A et al (2001) Peripheral blood T lymphocytes from systemic sclerosis patients show both Th1 and Th2 activation. J Clin Immunol 21:210–217

    Article  CAS  PubMed  Google Scholar 

  111. van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J et al (2014) Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA : J Am Med Assoc 311:2490–2498

    Article  CAS  Google Scholar 

  112. Veeraraghavan S, Renzoni EA, Jeal H, Jones M, Hammer J, Wells AU et al (2004) Mapping of the immunodominant T cell epitopes of the protein topoisomerase I. Ann Rheum Dis 63:982–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Wang YY, Wang Q, Sun XH, Liu RZ, Shu Y, Kanekura T et al (2014) DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br J Dermatol 171:39–47

    Article  CAS  PubMed  Google Scholar 

  114. Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A et al (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 100:12319–12324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW et al (2010) Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med 207:535–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4:583–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208:1339–1350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Xing X, Yang J, Yang X, Wei Y, Zhu L, Gao D et al (2013) IL-17A induces endothelial inflammation in systemic sclerosis via the ERK signaling pathway. PLoS ONE 8, e85032

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Yang X, Yang J, Xing X, Wan L, Li M (2014) Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction. Arthritis Res Ther 16:R4

    Article  PubMed Central  PubMed  Google Scholar 

  121. Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, et al (2008) CD19 regulates skin and lung fibrosis via toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol 6:1650–63

  122. Yoshizaki A, Yanaba K, Iwata Y, Komura K, Ogawa A, Muroi E et al (2011) Elevated serum interleukin-27 levels in patients with systemic sclerosis: association with T cell, B cell and fibroblast activation. Ann Rheum Dis 70:194–200

    Article  CAS  PubMed  Google Scholar 

  123. Yoshizaki A, Yanaba K, Ogawa A, Asano Y, Kadono T, Sato S (2011) Immunization with DNA topoisomerase I and Freund’s complete adjuvant induces skin and lung fibrosis and autoimmunity via interleukin-6 signaling. Arthritis Rheum 63:3575–3585

    Article  CAS  PubMed  Google Scholar 

  124. Yurovsky VV, Wigley FM, Wise RA, White B (1996) Skewing of the CD8+ T-cell repertoire in the lungs of patients with systemic sclerosis. Hum Immunol 48:84–97

    Article  CAS  PubMed  Google Scholar 

  125. Zhang Y, McCormick LL, Desai SR, Wu C, Gilliam AC (2002) Murine sclerodermatous graft-versus-host disease, a model for human scleroderma: cutaneous cytokines, chemokines, and immune cell activation. J Immunol 168:3088–3098

    Article  CAS  PubMed  Google Scholar 

  126. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Chizzolini.

Additional information

This article is a contribution to the Special Issue on Immunopathology of Systemic Sclerosis - Guest Editors: Jacob M. van Laar and John Varga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizzolini, C., Boin, F. The role of the acquired immune response in systemic sclerosis. Semin Immunopathol 37, 519–528 (2015). https://doi.org/10.1007/s00281-015-0509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0509-1

Keywords

Navigation